Department of Chemistry2024-11-0920201944-824410.1021/acsami.0c025242-s2.0-85086682766http://dx.doi.org/10.1021/acsami.0c02524https://hdl.handle.net/20.500.14288/6594Black phosphorus (BP) as a layered two-dimensional (2D) semiconductor material with a tunable band gap has attracted growing attention for promising applications in diverse fields including biotechnology owing to its excellent physical and chemical properties. In this study, BP crystals were synthesized using a chemical vapor transport method and exfoliated into BP nanosheets in deoxygenated water or hexane. Next, monodisperse Au nanoparticles that were synthesized using a surfactant-assisted chemical reduction method were assembled on exfoliated BP nanosheets hexane to yield BP/Au nanocomposites. The photothermal antibacterial and antibiofilm activities of BP nanosheets and BP/Au nanocomposites were investigated against Enterococcus faecalis, a pathogenic biofilm-forming bacterium, by studying the photothermal effect and bacterial growth curve and using colony counting and live/dead fluorescence staining methods under near-infrared (NIR) light irradiation. Thanks to the higher photothermal conversion efficiency of BP/Au nanocomposites than that of bare BP nanosheets under NIR light irradiation, they destructed the bacterial cell membrane more efficiently than bare BP with the biofilm inhibition rate of 58%. It should be noted that this is the first study on the antibacterial and antibiofilm activity of BP/Au nanocomposites via a photothermal process under NIR light irradiation. This work shows the potential of BP/Au nanocomposites in fighting against pathogenic bacteria and paves the way for the exploration of antibacterial platforms based on the biocompatible 2D semiconductor BP.NanoscienceNanotechnologyMaterials sciencePhotothermal antibacterial and antibiofilm activity of black phosphorus/gold nanocomposites against pathogenic bacteriaJournal Article1944-82525429253000045049