Department of Chemistry2024-11-0920091932-744710.1021/jp811104s2-s2.0-67649961822http://dx.doi.org/10.1021/jp811104shttps://hdl.handle.net/20.500.14288/155953-Mercaptopropionic acid (3MPA) is a popular coating material for the preparation of aqueous quantum dots, yet its isomer 2-mercaptopropionic acid (2MPA) has not been much studied. Here, we present a detailed study on the aqueous synthesis of CdS quantum dots with a 2MPA coating. Reaction variables Such as the Cd/S ratio, 2MPA/Cd ratio, pH, and temperature were individually studied to evaluate the influence of these variables on particle size and luminescence. At the optimum ratios and reaction conditions, a quantum yield (QY) as high as 54% was achieved. These quantum dots (QDs) have exhibited excellent colloidal and photostability over eight months of study. The color of the emission can be tuned by the reaction temperature and/or Cd/S ratio. 3MPA-coated US nanoparticles were prepared at various 3MPA/Cd ratios for comparison. The highest QY achieved for CdS-3MPA was 15%, and the luminescence decreased dramatically overtime. Ab initio calculations and spectroscopic characterization did not reveal a significant difference in the structure or particle-coating interaction between 2MPA- and 3MPA-coated QDs. Luminesence lifetime measurements indicated longer lifetimes and a larger contribution of the surface-related emission, indicating better removal of quenching defects froth the surface in 2MPA-coated particles compared to that of CdS-3MPA. On the basis of the provided evidence, we report 2MPA as a new and better alternative to the widely used 3MPA for superior luminescence and long-term photo and colloidal stability.Chemistry, physicalNanoscienceNanotechnologyMaterials science, multidisciplinaryEmergence of 2MPA as an effective coating for highly stable and luminescent quantum dotsJournal Article1932-7455266679500008Q210608