Department of Mathematics2024-11-0920191548-159X10.4310/DPDE.2019.v16.n4.a42-s2.0-85073426477https://hdl.handle.net/20.500.14288/973We consider the incompressible 2D Euler equations on bounded spatial domain S, and study the solution map on the Sobolev spaces H-k(S) (k > 2). Through an elaborate geometric construction, we show that for any T > 0, the time T solution map u(0) bar right arrow u(T) is nowhere locally uniformly continuous and nowhere Frechet differentiable.pdfMathematicsNowhere-differentiability of the solution map of 2D Euler equations on bounded spatial domainJournal Articlehttps://doi.org/10.4310/DPDE.2019.v16.n4.a4485631500004Q3NOIR01762