Department of Chemistry2024-11-1020101932-744710.1021/jp100312e2-s2.0-77951899420http://dx.doi.org/10.1021/jp100312ehttps://hdl.handle.net/20.500.14288/16954Hybrid nanoparticles (MDOTs) composed of luminescent quantum dots (QDs) and superparamagnetic iron oxides (SPIOs) were prepared by the ligand-exchange mechanism in a simple and versatile extraction method. In this method, aqueous QDs (CdS or CdTe) coated with carboxylated ligands exchange the fatty acid (lauric acid) coating of SPIOs in a water chloroform extraction process. QDs form a coating around SPIOs and transfer them into the aqueous phase in high efficiency. The method worked successfully with both small and polymeric coating molecules selected as cysteine, 2-mercaptopropionic acid, and a poly(acrylic acid)/mercaptoacetic acid mixture. The original properties of the nanoparticles were well-preserved in the hybrid structures: All MDOTS showed ferrofluidic behavior and had a luminescence in the original color of the QD. Magnetic properties and the luminesence intensity of MDOTs can be easily tuned with the SPIO/QD ratio. All particles are small and show very good stability (optical and colloidal) over months. For stable MDOTs with good luminescence properties, highly luminescent aqueous QDs (CdS or CdTe) with the mentioned coatings were prepared. The first examples of CdTe coated with 2MPA emitting from green to red and CdTe-PAA/MAA were provided as well.ChemistryPhysical chemistryNanoscienceNanotechnologyMaterials scienceA universal method for the preparation of magnetic and luminescent hybrid nanoparticlesJournal Article1932-7455277053600035Q24379