Department of Chemistry2024-11-0920151463-907610.1039/c5cp00283d2-s2.0-84945290172https://hdl.handle.net/20.500.14288/1466Size-selected 9 nm PtxY nanoparticles have recently shown an outstanding catalytic activity for the oxygen reduction reaction, representing a promising cathode catalyst for proton exchange membrane fuel cells (PEMFCs). Studying their electrochemical dealloying is a fundamental step towards the understanding of both their activity and stability. Herein, size-selected 9 nm PtxY nanoparticles have been deposited on the cathode side of a PEMFC specifically designed for in situ ambient pressure X-ray photoelectron spectroscopy (APXPS). The dealloying mechanism was followed in situ for the first time. It proceeds through the progressive oxidation of alloyed Y atoms, soon leading to the accumulation of Y3+ cations at the cathode. Acid leaching with sulfuric acid is capable of accelerating the dealloying process and removing these Y3+ cations which might cause long term degradation of the membrane. The use of APXPS under near operating conditions allowed observing the population of oxygenated surface species as a function of the electrochemical potential. Similar to the case of pure Pt nanoparticles, non-hydrated hydroxide plays a key role in the ORR catalytic process.pdfPhysical chemistryPhysicsDirect observation of the dealloying process of a platinum–yttrium nanoparticle fuel cell cathode and its oxygenated species during the oxygen reduction reactionJournal Article1463-9084https://doi.org/10.1039/c5cp00283d363686800021Q2NOIR00297