Department of Molecular Biology and Genetics2024-12-2920241751-425810.1097/SPC.00000000000007052-s2.0-85200524690https://doi.org/10.1097/SPC.0000000000000705https://hdl.handle.net/20.500.14288/23256Purpose of review Cachexia is a debilitating condition causing weight loss and skeletal muscle wasting that negatively influences treatment and survival of cancer patients. The objective of this review is to describe recent discoveries on the role of a novel signaling pathway involving ectodysplasin A2 receptor (EDA2R) and nuclear factor kappa B (NF kappa B)-inducing kinase (NIK) in muscle atrophy.Recent findingsStudies identified tumor-induced upregulation of EDA2R expression in muscle tissues in pre-clinical cachexia models and patients with various cancers. Activation of EDA2R by its ligand promoted atrophy in cultured myotubes and muscle tissue, which depended on NIK activity. The non-canonical NF kappa B pathway via NIK also stimulated muscle atrophy. Mice lacking EDA2R or NIK were protected from muscle loss due to tumors. Tumor-induced cytokine oncostatin M (OSM) upregulated EDA2R expression in muscles whereas OSM receptor-deficient mice were resistant to muscle wasting.SummaryRecent discoveries revealed a mechanism involving EDA2R-NIK signaling and OSM that drives cancer-associated muscle loss, opening up new directions for designing anti-cachexia treatments. The therapeutic potential of targeting this mechanism to prevent muscle loss should be further investigated. Future research should also explore broader implications of the EDA2R-NIK pathway in other muscle wasting diseases and overall muscle health.Health care sciences and servicesEDA2R-NIK signaling in cancer cachexiaReview1751-42661282634000007Q341399