Department of Mathematics2024-11-0920190373-311410.1007/s10231-018-0798-92-s2.0-85055116258http://dx.doi.org/10.1007/s10231-018-0798-9https://hdl.handle.net/20.500.14288/14276In this paper we consider the hyperelastic rod equation on the Sobolev spaces Hs(R), s>3/2. Using a geometric approach we show that for any T>0 the corresponding solution map, u(0)?u(T), is nowhere locally uniformly continuous. The method applies also to the periodic case Hs(T), s>3/2.MathematicsApplied mathematicsOn the well-posedness of the hyperelastic rod equationJournal Article1618-1891468996400006Q23760