Department of Physics2024-11-0920080740-322410.1364/JOSAB.25.0007942-s2.0-62249106698http://dx.doi.org/10.1364/JOSAB.25.000794https://hdl.handle.net/20.500.14288/6810We propose several methods for the accurate determination of the cross sections of solid-state saturable absorbers and apply them to the analysis of polycrystalline Cr2+ :ZnSe and Fe2+ :ZnSe. In the case of Cr2+ :ZnSe, both z-scan and power-dependent transmission measurements were made by using a continuous-wave fiber laser at 1800 nm and a pulsed optical parametric oscillator at 1570 nm. The average ground-state absorption cross sections at the wavelengths of 1800 and 1570 nm were determined to be 6.17 x 10(-19) cm(2) and 2.24 x 10(-19) cm(2), respectively. Furthermore, the ratio of the cross sections at these wavelengths (2.75) was close to the value of 2.55 obtained from absorption spectrum measurements. Excited-state absorption was found to be negligible at both wavelengths. In the case of Fe2+ : ZnSe, a tunable, pulsed Cr2+ :ZnSe laser was used to obtain saturation data (z-scan and power-dependent saturation) at the wavelengths of 2645 and 2730 nm. Average ground-state absorption cross sections at 2645 and 2730 nm were determined to be 1.73 x 10(-19) cm(2) and 2.47 x 10(-19) cm(2), respectively, again in very good agreement with those obtained from absorption spectrum measurements. (c) 2008 Optical Society of America.OpticsAbsorption saturation analysis of Cr2+: ZnSe and Fe2+: ZnSeJournal Article1520-8540256323200014Q31400