Department of Mechanical Engineering2024-11-0920200021-889810.1107/S16005767190155042-s2.0-85079406354https://hdl.handle.net/20.500.14288/2925Silicon nanowire-based sensors find many applications in micro- and nano-electromechanical systems, thanks to their unique characteristics of flexibility and strength that emerge at the nanoscale. This work is the first study of this class of micro- and nano-fabricated silicon-based structures adopting the scanning X-ray diffraction microscopy technique for mapping the in-plane crystalline strain (epsilon(044)) and tilt of a device which includes pillars with suspended nanowires on a substrate. It is shown how the micro- and nanostructures of this new type of nanowire system are influenced by critical steps of the fabrication process, such as electron-beam lithography and deep reactive ion etching. X-ray analysis performed on the 044 reflection shows a very low level of lattice strain (<0.00025 Delta d/d) but a significant degree of lattice tilt (up to 0.214 degrees). This work imparts new insights into the crystal structure of micro- and nanomaterial-based sensors, and their relationship with critical steps of the fabrication process.pdfChemistry, multidisciplinaryCrystallographyReal- and Q-space travelling: multi-dimensional distribution maps of crystal-lattice strain (epsilon(044)) and tilt of suspended monolithic silicon nanowire structuresJournal Article1600-5767https://doi.org/10.1107/S1600576719015504512316900008Q1NOIR02109