Department of Chemistry2024-11-1020230024-929710.1021/acs.macromol.2c014732-s2.0-85146073131http://dx.doi.org/10.1021/acs.macromol.2c01473https://hdl.handle.net/20.500.14288/16785The orientation behavior of segment-specific chemical groups of NH and CH was investigated for poly(ethylene oxide) (PEO)-based polyurethane urea (PUU) during uniaxial stretching using a uniaxial stretching system integrated with spectral birefringence and ultrafast IR spectrometers that capture two polarization states simultaneously. PUUs with 30% by-weight urethane-urea hard segment content were prepared using PEO oligomers with number average molecular weights of 2000, 4600, and 8000 g/mol. High-molecular weight PEO-based PUUs exhibited microphase morphologies with sharp interfaces between the PEO matrix and urethane-urea hard segments, while low-molecular weight PEO-2000 (2000 g/mol)-based PUU exhibited a gradient interphase. This is primarily due to substantial hydrogen-bonding interactions between the urea hard segments and ether groups of highly amorphous PEO-2000 compared with highly crystalline soft segments in PEO-4600 and PEO-8000, which lack significant hydrogen-bonding interactions with urea groups and hence a sharper interface and improved microphase separation. The segment-specific chemical group orientation study revealed that the relaxation and reorganization behaviors are closely dependent on the initial morphology. In microphase-separated PUU with a gradient interphase, responses of the hard and soft segments to deformation are similar even at lower strain levels. For the microphase-separated PUUs with a sharp interface, the low-strain level orientation is localized in the soft-segment regions until the connection with the hard segments drive the orientation in the chain axis toward the stretching direction. This network transition is also reflected in the mechano-optical behavior as a change from a high-strain optical constant to a lower-strain optical constant.Materials chemistryInorganic chemistryOrganic chemistryPolymer ScienceFast-Tracking of the segmental orientation in r poly(ethylene oxide)-based polyurethane urea by mechano-optical (infrared dichroism and birefringence) properties: degree of the soft-segment ordering effectJournal Articlehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85146073131&doi=10.1021%2facs.macromol.2c01473&partnerID=40&md5=bd5a134887a65b0eb42bbf1028de97b5912556600001Q112426