Publication:
Machine learning aided NR-V2X quality of service predictions

Placeholder

School / College / Institute

Organizational Unit
Organizational Unit

Program

KU Authors

Co-Authors

Karaağaç, Sercan

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

Vehicle-to-Everything Communication (V2X) technologies aim to meet strict quality-of-service (QoS) requirements of vehicular connectivity applications such as safety message exchange, remote driving, and sensor data sharing. The high reliability requirement is particularly important to enable safety relevant applications. Thus, predicting QoS levels becomes key to ensure the reliability of the connected vehicle applications. Recently, machine learning (ML) algorithms are demonstrated to provide dependable predictions to plan, simulate, and evaluate the performance of vehicular networks. In this paper, we propose ML aided New Radio (NR)-V2X QoS predictions scheme to provide Packet Delivery Ratio (PDR) and throughput predictions with the input of Modulation and Coding Schemes (MCS), distance-to-base station, Signal to Interference plus Noise Ratio (SINR), and packet size. Seven different ML algorithms based prediction models are trained and evaluated by using NR-V2X simulation data. We provide performance comparisons between Support Vector Regression (SVR), Deep Neural Network (DNN), Random Forest (RF), Gradient Boosting Machine (GBM), Extreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), and Light GBM (LGBM) for predicting throughput and PDR. We demonstrate that CatBoost and RF are the best performing algorithms to predict throughput and PDR of NR-V2X networks, respectively.

Source

Publisher

IEEE

Subject

Computer science, Hardware and architecture, Information systems, Telecommunications, Transportation science and technology

Citation

Has Part

Source

2023 IEEE Vehicular Networking Conference, VNC

Book Series Title

Edition

DOI

10.1109/VNC57357.2023.10136346

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

1

Views

0

Downloads

View PlumX Details