Publications without Fulltext
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/3
Browse
Publication Metadata only 300 GHz broadband transceiver design for low-THz band wireless communications in indoor internet of things(Ieee, 2017) N/A; Department of Electrical and Electronics Engineering; N/A; Department of Electrical and Electronics Engineering; Khalid, Nabil; Abbasi, Naveed Ahmed; Akan, Özgür Barış; Researcher; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 6647This paper presents the architectural design of a 300 GHz transceiver system that can be used to explore the high speed communication opportunities offered by the Terahertz (THz) band for advanced applications of Internet-of-Things (IoT). We use low cost industry ready components to prepare a fully customizable THz band communication system that provides a bandwidth of 20 GHz that is easily extendable up to 40 GHz. Component parameters arc carefully observed and used in simulations to predict the system performance while the compatibility of different components is ensured to produce a reliable design. Our results show that the receiver provides a conversion gain of 51 dB with a noise figure (NE) of 9.56 dB to achieve a data rate of 90.31 Gbps at an operation range of 2 meters, which is suitable for high speed indoor IoT nodes. The flexible design of the transceiver provides groundwork for further research efforts in 5G IoT applications and pushing boundaries of throughputs to the order of terabits per second (Tbps).Publication Metadata only Capacity and coverage analysis for FD-MIMO based thz band 5G indoor internet of things(Ieee, 2017) N/A; Department of Electrical and Electronics Engineering; N/A; Department of Electrical and Electronics Engineering; Khalid, Nabil; Abbasi, Naveed Ahmed; Akan, Özgür Barış; Researcher; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 6647Current and proposed Internet of things (IoT) applications are expected to bring about a major technological revolutions. Next-generation wireless communications in such devices are expected to support high speed data transfers. Among different candidate technologies, terahertz (THz) band communication seems to be a promising direction due to availability of high bandwidth in the electromagnetic spectrum around this frequency range and its directional nature governed by the directive antennas. In this paper, we look into some networking scenarios of full-dimension multiple-input multiple-output (FD-MIMO) based THz Band indoor wireless networks to determine the number of nodes that can be connected to a base station as a function of the antenna characteristics. Furthermore, we analyze the performance of the users and network based on their ergodic capacity. Our results suggest fundamental parameters that can be used in future THz Band analysis and implementations.