Publications without Fulltext
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/3
Browse
267 results
Search Results
Publication Metadata only Comparison of convex combination and affine combination of adaptive filters(Ieee, 2009) Singer, Andrew C.; Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Kozat, Süleyman Serdar; Erdoğan, Alper Tunga; Faculty Member; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; College of Engineering; 177972; 41624In the area of combination of adaptive filters, two main approaches, namely convex and affine combinations have been introduced. In this article, the relation between these two approaches is investigated. First, the problem of obtaining optimal convex combination coefficients is formulated as the projection of the optimal affine combination weights to the unit simplex in a weighted inner product space. Based on this formulation the closed form expressions for optimal combination weights and target MSE levels are obtained for two and three branch cases.Publication Metadata only Sculpture surface machining: a generalized model of ball-end milling force system(Elsevier Sci Ltd, 2003) N/A; Department of Mechanical Engineering; Lazoğlu, İsmail; Faculty Member; Department of Mechanical Engineering; College of Engineering; 179391A new mechanistic model is presented for the prediction of a cutting force system in ball-end milling of sculpture surfaces. The model has the ability to calculate the workpiece/cutter intersection domain automatically for a given cutter location (CL) file, cutter and workpiece geometries. Furthermore, an analytical approach is used to determine the instantaneous chip load (with and without runout) and cutting forces. In addition to predicting the cutting forces, the model also employs a Boolean approach for a given cutter, workpiece geometries, and CL file to determine the surface topography and scallop height variations alone, the workpiece surface which can be visualized in 3-D. The results of model validation experiments on machining Ti-6A1-4V are also reported. Comparisons of the predicted and measured forces as well as surface topography show good agreement.Publication Metadata only A computational study of drop formation in an axisymmetric flow-focusing device(Amer Soc Mechanical Engineers, 2006) Department of Mechanical Engineering; Department of Mechanical Engineering; Filiz, İsmail; Muradoğlu, Metin; N/A; Faculty Member; Department of Mechanical Engineering; College of Engineering; College of Engineering; N/A; 46561We investigate the formation and dynamics of drops computationally in an axisymetric geometry using a Front-Tracking/Finite-Difference (FT/FD) method. The effects of viscosity ratio between inner and outer liquids on the drop creation process and drop size distribution are examined. It is found that the viscosity ratio critically influences the drop formation process and the final drop distribution. We found that, for small viscosity ratios, i.e., 0.1 < lambda < 0.5 drop size is about the size of the orifice and drop distribution is highly monodisperse. When viscosity ratio is increased, i.e., 0.5 < lambda < I a smaller drop is created just after the main drop. For even higher viscosity ratios, the drop distribution is usually monodisperse but a satellite drop is created in some cases. The effect of the flow rates in the inner jet and the co flowing annulus are also studied. It is found that the drop size gets smaller as Q(in) / Q(out) is reduced while keeping the outer flow rate constant.Publication Metadata only On the convergence of ICA algorithms with symmetric orthogonalization(IEEE, 2008) Department of Electrical and Electronics Engineering; Erdoğan, Alper Tunga; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 41624We study the convergence behavior of Independent Component Analysis (ICA) algorithms that are based on the contrast function maximization and that employ symmetric orthogonalization method to guarantee the orthogonality property of the search matrix. In particular, the characterization of the critical points of the corresponding optimization problem and the stationary points of the conventional gradient ascent and fixed point algorithms are obtained. As an interesting and a useful feature of the symmetrical orthogonalization method, we show that the use of symmetric orthogonalization enables the monotonic convergence for the fixed point ICA algorithms that are based on the convex contrast functions.Publication Metadata only Multicamera audio-visual analysis of dance figures(IEEE, 2007) N/A; N/A; Department of Computer Engineering; Department of Computer Engineering; Department of Electrical and Electronics Engineering; Ofli, Ferda; Erzin, Engin; Yemez, Yücel; Tekalp, Ahmet Murat; PhD Student; Faculty Member; Faculty Member; Faculty Member; Department of Computer Engineering; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; College of Engineering; N/A; 34503; 107907; 26207We present an automated system for multicamera motion capture and audio-visual analysis of dance figures. the multiview video of a dancing actor is acquired using 8 synchronized cameras. the motion capture technique is based on 3D tracking of the markers attached to the person's body in the scene, using stereo color information without need for an explicit 3D model. the resulting set of 3D points is then used to extract the body motion features as 3D displacement vectors whereas MFC coefficients serve as the audio features. in the first stage of multimodal analysis, we perform Hidden Markov Model (HMM) based unsupervised temporal segmentation of the audio and body motion features, separately, to determine the recurrent elementary audio and body motion patterns. then in the second stage, we investigate the correlation of body motion patterns with audio patterns, that can be used for estimation and synthesis of realistic audio-driven body animation.Publication Metadata only Application QoS fairness in wireless video scheduling(Institute of Electrical and Electronics Engineers (IEEE), 2006) N/A; N/A; Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Özçelebi, Tanır; Tekalp, Ahmet Murat; Civanlar, Mehmet Reha; Sunay, Mehmet Oğuz; PhD Student; Faculty Member; Faculty Member; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; College of Engineering; N/A; 26207; 16372; N/AThe video pre-roll delay for filling up the client buffer can not be too long for user utility and buffer limitations in wireless point-to-multipoint streaming systems. Cross-layer design that deals with both physical and application layer aspects jointly is necessary for this purpose. We present a cross-layer optimized multiuser video adaptation and user scheduling framework for wireless video communication, where Quality-of-Service (QoS) fairness among users is provided with maximum video quality and video throughput. Both protocol layers are jointly optimized using a single Multi-Objective Optimization (MOO) framework that aims to schedule the user with the least remaining playback time and the highest video throughput (delivered video seconds per transmission slot) with maximum video quality. Experiments carried out in the IS-856 (1×EV-DO) standard and ITU pedestrian and vehicular environments demonstrate the improvements over the state-of-the-art schedulers in terms of video QoS fairness, video quality and throughput. / İstemci arabelleğini doldurmak için videodan önce gösterilen reklam gecikmesi, kablosuz noktadan çok noktaya akış sistemlerinde kullanıcı yardımcı programı ve arabellek sınırlamaları için çok uzun olamaz. Bu amaç için hem fiziksel hem de uygulama katmanı özelliklerini birlikte ele alan çapraz katman tasarımı gereklidir. Kablosuz video iletişimi için, kullanıcılar arasında Hizmet Kalitesi (QoS) adaletinin maksimum video kalitesi ve video çıkışı ile sağlandığı, katmanlar arası optimize edilmiş çok kullanıcılı bir video uyarlaması ve kullanıcı planlama çerçevesi sunuyoruz. Her iki protokol katmanı, kullanıcıyı maksimum video kalitesiyle en az kalan oynatma süresi ve en yüksek video verimi (iletim yuvası başına iletilen video saniyesi) ile programlamayı amaçlayan tek bir Çok Amaçlı Optimizasyon (MOO) çerçevesi kullanılarak ortaklaşa optimize edilmiştir. IS-856 (lxEV-DO) standardında ve ITU yaya ve araç ortamlarında gerçekleştirilen deneyler, video QoS adaleti, video kalitesi ve verim açısından en son teknoloji zamanlayıcılara göre iyileştirmeler göstermektedir.Publication Metadata only E_coach(IEEE, 2004) Department of Electrical and Electronics Engineering; Department of Computer Engineering; Civanlar, Mehmet Reha; Baykan, Eda; Faculty Member; Undergraduated Student; Department of Electrical and Electronics Engineering; Department of Computer Engineering; College of Engineering; College of Engineering; 16372; N/AWe developed the necessary software to control the playback speed of exercise videos playing on a personal computer, using the heart rate of an individual performing the recorded exercise routine. Moderate exercise, at an appropriate heart rate, is widely regarded today as an excellent way to improve one's health when performed on a regular and frequent basis. One popular form of an indoor exercise program is to use a video "workout" program of aerobic exercise and/or weight training exercises. The "off-the-shelf" exercise videos, while they may target various fitness levels (such as "beginner", "regular", and "advanced"), cannot offer precise adjustments to address each user's current fitness level. The software developed allows for the playback of an exercise video to be adjusted to accommodate the fitness level of the individual user through a closed loop feedback mechanism. The project is being improved for logging and analyzing the performance of an individual who uses the system regularly and for exercise planning. The closed loop feedback mechanism that models the relationship between the heart rate and exercise level, is being improved with the experiments in which subjects incude fit people as well as ones who are sedementary. © 2004 IEEE.Publication Metadata only Modeling and characterization of comb-actuated resonant microscanners(Iop Publishing Ltd, 2006) N/A; Department of Electrical and Electronics Engineering; Ataman, Çağlar; Ürey, Hakan; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 8579The dynamics of the out-of-plane comb-drive actuator used in a torsional resonant mode microscanner is discussed. The microscanner is fabricated using the standard SOI technology by Fraunhofer, IPMS and utilized in various display, barcode scanning, spectroscopy and other imaging applications. The device is a parametrically excited system and exhibits hysteretic frequency response, nonlinear transient response, subharmonic oscillations, multiple parametric resonances, and alternating-oscillation-frequency behavior. Analytical and numerical models are developed to predict the parametric system dynamics. The analytical model is based on the solution of the linear Mathieu equation and valid for small angular displacements. The numerical model is valid for both small and large deflection angles. The analytical and numerical models are validated with the experimental results under various ambient pressures and excitation schemes and successfully predict the dynamics of the parametric nature of the microscanner. As many as four parametric resonances are observed at 30 mTorr. The models developed in this paper can be used to optimize the structure and the actuator.Publication Metadata only Design methodology microelectromechanical systems. Case study: torsional scanner mirror(Asme-Amer Soc Mechanical Eng, 2007) N/A; N/A; Department of Mechanical Engineering; Meral, Faik Can; Başdoğan, İpek; Master Student; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 179940Future optical microsystems, such as microelectromechanical system (MEMS) scanners and micromirrors, will extend the resolution and sensitivity offered by their predecessors. These systems face the challenge of achieving nanometer precision subjected to various disturbances. Predicting the performance of such systems early in the design process can significantly impact the design cost and also improve the quality, of the design. Our approach aims to predict the performance of such systems under various disturbance sources and develop a generalized design approach for MEMS structures. In this study, we used ANSYS for modeling and dynamic analysis of a torsional MEMS scanner mirror. ANSYS modal analysis results, which are eigenvalues (natural frequencies) and eigenvectors (mode shapes), are used to obtain the state-space representation of the mirror. The state-space model of the scanner mirror was reduced using various reduction techniques to eliminate the states that are insignificant for the transfer functions of interest. The results of these techniques were compared to obtain the best approach to obtain a lower order model that still contains all the relevant dynamics of the original model. After the model size is reduced significantly, a disturbance analysis is performed using Lyapunov approach to obtain root-mean-square values of the mirror rotation angle under the effect of a disturbance torque. The magnitude levels of the disturbance torque are obtained using an experimental procedure. The disturbance analysis framework is combined with the sensitivity analysis to determine the critical design parameters for optimizing the system performance.Publication Metadata only Dislocation activities in aluminum alloyed Hadfield steels(N/A, 2008) Şehitoğlu, Hüseyin; Department of Mechanical Engineering; Canadinç, Demircan; Faculty Member; Department of Mechanical Engineering; College of Engineering; 23433The work presented herein investigates the unusual strain hardening prevalent in Hadfield steel, which has not yet been linked to a clear cause, yet. The methodology adopted in this study is suppressing one of the dominant deformation mechanisms interactively dictating the work hardening of Hadfield steel, namely twinning and slip, and concentrating on the other. To achieve this end, Hadfield steel was alloyed with aluminium to increase the stacking fault energy, and thereby suppress twinning and give way to slip only. As a result of the thorough mechanical and micro structural analyses, we have concluded that the slip-related dislocation activities and the high-density dislocation walls brought about by slip in Hadfield steel significantly contribute to the work hardening of this material. / Öz: Bu çalışma, uzun bir süredir araştırılmasına rağmen, Hadfield çeliğinin henüz sebebi kesin olarak ortaya konulamayan olağan dışı sertleşme kapasitesine ışık tutmak amacıyla probleme değişik bir açıdan yaklaşmaktadır. Şimdiye kadar bu sertleşmenin sebebi olarak öne sürülen ve sertleşmeye olan katkıları birbirinden ayırt edilmesi güç olan ikiz ve kayma mekanizmalarından birini bastırarak diğerini inceleme yoluna gidilmiştir. Hadfield çeliği alüminyum ile alaşımlanarak dizim hatası enerji eşiği yükseltilmiş ve kayma mekanizmasının baskın olması sağlanmıştır. Yürütülen kapsamlı deneysel ve nümerik analizler sonucu varılan sonuç, aykırı yerleşim aktivitelerinin ve bunun doğal bir sonucu olan yüksek yoğunluklu aykırı yerleşim duvarlarının, Hadfield çeliğinin sertleşmesinde büyük katkı sahibi olduğunu ortaya koymuştur.