Publications without Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/3

Browse

Search Results

Now showing 1 - 10 of 116
  • Placeholder
    Publication
    Light engine and optics for HELIUM3D auto-stereoscopic laser scanning display
    (IEEE, 2011) Willman, Eero; Baghsiahi, Hadi; Day, Sally E.; Selviah, David R.; Fernandez, F. Anibal; N/A; Department of Electrical and Electronics Engineering; N/A; Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Akşit, Kaan; Ölçer, Selim; Erden, Erdem; Chellappan, Kishore Velichappattu; Ürey, Hakan; PhD Student; Other; Master Student; Researcher; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; N/A; N/A; N/A; 8579
    This paper presents a laser-based auto-stereoscopic 3D display technique and a prototype utilizing a dual projector light engine. The solution described is able to form dynamic exit pupils under the control of a multi-user head-tracker. A prototype completed recently is able to provide a glasses-free solution for a single user at a fixed position. At the end of the prototyping phase it is expected to enable a multiple user interface with an integration of the pupil tracker and the spatial light modulator.
  • Placeholder
    Publication
    A physical channel model for nanoscale neuro-spike communications
    (IEEE-Inst Electrical Electronics Engineers Inc, 2013)  Balevi, eren; Department of Electrical and Electronics Engineering; Akan, Özgür Barış; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 6647
    Nanoscale communications is an appealing domain in nanotechnology. Novel nanoscale communications techniques are currently being devised inspired by some naturally existing phenomena such as the molecular communications governing cellular signaling mechanisms. Among these, neuro-spike communications, which governs the communications between neurons, is a vastly unexplored area. The ultimate goal of this paper is to accurately investigate nanoscale neuro-spike communications characteristics through the development of a realistic physical channel model between two neurons. The neuro-spike communications channel is analyzed based on the probability of error and delay in spike detection at the output. The derived communication theoretical channel model may help designing novel artificial nanoscale communications methods for the realization of future practical nanonetworks, which are the interconnections of nanomachines.
  • Placeholder
    Publication
    Application QoS fairness in wireless video scheduling
    (Institute of Electrical and Electronics Engineers (IEEE), 2006) N/A; N/A; Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Özçelebi, Tanır; Tekalp, Ahmet Murat; Civanlar, Mehmet Reha; Sunay, Mehmet Oğuz; PhD Student; Faculty Member; Faculty Member; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; College of Engineering; N/A; 26207; 16372; N/A
    The video pre-roll delay for filling up the client buffer can not be too long for user utility and buffer limitations in wireless point-to-multipoint streaming systems. Cross-layer design that deals with both physical and application layer aspects jointly is necessary for this purpose. We present a cross-layer optimized multiuser video adaptation and user scheduling framework for wireless video communication, where Quality-of-Service (QoS) fairness among users is provided with maximum video quality and video throughput. Both protocol layers are jointly optimized using a single Multi-Objective Optimization (MOO) framework that aims to schedule the user with the least remaining playback time and the highest video throughput (delivered video seconds per transmission slot) with maximum video quality. Experiments carried out in the IS-856 (1×EV-DO) standard and ITU pedestrian and vehicular environments demonstrate the improvements over the state-of-the-art schedulers in terms of video QoS fairness, video quality and throughput. / İstemci arabelleğini doldurmak için videodan önce gösterilen reklam gecikmesi, kablosuz noktadan çok noktaya akış sistemlerinde kullanıcı yardımcı programı ve arabellek sınırlamaları için çok uzun olamaz. Bu amaç için hem fiziksel hem de uygulama katmanı özelliklerini birlikte ele alan çapraz katman tasarımı gereklidir. Kablosuz video iletişimi için, kullanıcılar arasında Hizmet Kalitesi (QoS) adaletinin maksimum video kalitesi ve video çıkışı ile sağlandığı, katmanlar arası optimize edilmiş çok kullanıcılı bir video uyarlaması ve kullanıcı planlama çerçevesi sunuyoruz. Her iki protokol katmanı, kullanıcıyı maksimum video kalitesiyle en az kalan oynatma süresi ve en yüksek video verimi (iletim yuvası başına iletilen video saniyesi) ile programlamayı amaçlayan tek bir Çok Amaçlı Optimizasyon (MOO) çerçevesi kullanılarak ortaklaşa optimize edilmiştir. IS-856 (lxEV-DO) standardında ve ITU yaya ve araç ortamlarında gerçekleştirilen deneyler, video QoS adaleti, video kalitesi ve verim açısından en son teknoloji zamanlayıcılara göre iyileştirmeler göstermektedir.
  • Placeholder
    Publication
    High-resolution beam steering using microlens arrays
    (Optical Soc Amer, 2006) N/A; N/A; Department of Electrical and Electronics Engineering; Akatay, Ata; Ataman, Çağlar; Ürey, Hakan; Master Student; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 8579
    Imaging or beam-steering systems employing a periodic array of microlenses or micromirrors suffer from diffraction problems resulting from the destructive interference of the beam segments produced by the array. Simple formulas are derived for beam steering with segmented apertures that do not suffer from diffraction problems because of the introduction of a moving linear phase shifter such as a prescan lens before the periodic structure. The technique substantially increases the resolution of imaging systems that employ microlens arrays or micromirror arrays. Theoretical, numerical, and experimental results demonstrating the high-resolution imaging concept using microlens arrays are presented.
  • Placeholder
    Publication
    Embedding and retrieving private metadata in electrocardiograms
    (Springer, 2009) Vlachos, Michail; Lucchese, Claudio; Van Herle, Helga; Yu, Philip S; Department of Electrical and Electronics Engineering; Kozat, Süleyman Serdar; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 177972
    Due to the recent explosion of 'identity theft' cases, the safeguarding of private data has been the focus of many scientific efforts. Medical data contain a number of sensitive attributes, whose access the rightful owner would ideally like to disclose only to authorized personnel. One way of providing limited access to sensitive data is through means of encryption. In this work we follow a different path, by proposing the fusion of the sensitive metadata within the medical data. Our work is focused on medical time-series signals and in particular on Electrocardiograms (ECG). We present techniques that allow the embedding and retrieval of sensitive numerical data, such as the patient's social security number or birth date, within the medical signal. The proposed technique not only allows the effective hiding of the sensitive metadata within the signal itself, but it additionally provides a way of authenticating the data ownership or providing assurances about the origin of the data. Our methodology builds upon watermarking notions, and presents the following desirable characteristics: (a) it does not distort important ECG characteristics, which are essential for proper medical diagnosis, (b) it allows not only the embedding but also the efficient retrieval of the embedded data, (c) it provides resilience and fault tolerance by employing multistage watermarks (both robust and fragile). Our experiments on real ECG data indicate the viability of the proposed scheme.
  • Placeholder
    Publication
    Guest editorial special issue on toward securing Internet of Connected Vehicles (IoV) from virtual vehicle hijacking
    (Institute of Electrical and Electronics Engineers (IEEE), 2019) Cao, Yue; Kaiwartya, Omprakash; Song, Houbing; Lloret, Jaime; Ahmad, Naveed; Department of Electrical and Electronics Engineering; Ergen, Sinem Çöleri; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 7211
    N/A
  • Placeholder
    Publication
    Analysis and optimization of duty-cycle in preamble-based random access networks
    (Springer, 2013) Fischione, C.; Park, P.; Department of Electrical and Electronics Engineering; Ergen, Sinem Çöleri; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 7211
    Duty-cycling has been proposed as an effective mechanism for reducing the energy consumption in wireless sensor networks (WSNs). Asynchronous duty-cycle protocols where the receiver wakes up periodically to check whether there is a transmission and the sender transmits preambles to check if the receiver is awake are widely used in WSNs due to the elimination of complex control mechanisms for topology discovery and synchronization. However, the intrinsic simplicity of the asynchronous mechanism has the drawback of smaller energy saving potential that requires the optimization of the duty cycle parameters. In this paper, we propose a novel method for the optimization of the duty-cycle parameters in preamble-based random access networks based on the accurate modeling of delay, reliability and energy consumption as a function of listen time, sleep time, traffic rate and medium access control (MAC) protocol parameters. The challenges for modeling are the random access MAC and the sleep policy of the receivers, which make it impossible to determine the exact time of data packet transmissions, and thus difficult to investigate the performance indicators given by the delay, reliability and energy consumption to successfully receive packets. An analysis of these indicators is developed as a function of the relevant parameters of the network and it is used in the minimization of the energy consumption subject to delay and reliability requirements. The optimization provides significant reduction of the energy consumption compared to the previously proposed protocols in the literature.
  • Placeholder
    Publication
    Emerging 3-D imaging and display technologies
    (Institute of Electrical and Electronics Engineers (IEEE), 2017) Javidi, Bahram; Department of Electrical and Electronics Engineering; Tekalp, Ahmet Murat; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 26207
    We have become an information-centric society vastly dependent on the collection, communication, and presentation of information. At any given moment, it is likely that we are in the vicinity of some form of a display as displays play a prominent role in a variety of devices and applications. Three-dimensional imaging and display technologies are important components for presentation and visualization of information and for creating real-world-like environments in communication. There are broad applications of 3-D imaging and display technologies in computers, communication, mobile devices, TV, video, entertainment, robotics, metrology, security and defense, healthcare, and medicine.
  • Placeholder
    Publication
    A receiver-driven multicast framework for 3DTV transmission
    (Institute of Electrical and Electronics Engineers (IEEE), 2005) N/A; N/A; Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Kurutepe, Engin; Civanlar, Mehmet Reha; Tekalp, Ahmet Murat; Master Student; Faculty Member; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; 16372; 26207
    Contemporary television and video experience is not interactive and mostly static. There is a demand for a real 3-D interactive experience which would allow users to view scenes through virtual cameras. Among other issues the amount of bandwidth required to transmit very large 3-D scene representations to end users is still an unsolved problem. In this paper we propose a novel networking scheme to enable users to automatically stream only the necessary parts of the 3-D representation to render the actual view. Our method also incorporates prediction of future views to prefetch streams which are likely to be needed in the near future as the view changes over time. / Güncel televizyon ve video deneyimi büyük ölçüde duruktur ve etkileşimli değildir. Ancak kullanıcıların sahneleri sanal kameralarla görmelerini sağlayacak gerçek 3-B etkileşimli deneyime ihtiyaç vardır. Çok büyük 3-B sahne gösterimlerinin son kullanıcılara iletimi için gerekli olan bant genişliği miktarı hala çözülememiş sorunlardan biridir. Biz bu makale ile kullanıcıların 3-B gösterimin sadece o andaki bakışlarını oluşturmak için gerekli olan kısımlarını duraksız iletim ile almalarını sağlayan bir ağ yöntemi öneriyoruz. Buna ek olarak kullanıcının bakışındaki değişikliklere göre gelecekte gerekli olabilecek veri katarlarını öngörerek alıp getirmeyi amaçlıyoruz.
  • Placeholder
    Publication
    Closed-form representations of field components of fluorescent emitters in layered media
    (Optical Soc Amer, 2009) Doğan, Mehmet; Swan, Anna K.; Goldberg, Bennett B.; Ünlü, M. Selim; Department of Electrical and Electronics Engineering; Aksun, M. İrşadi; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 28358
    Dipole radiation in and near planar stratified dielectric media is studied theoretically within the context of fluorescence microscopy, as fluorescent emitters are generally modeled by electric dipoles. Although the main emphasis of this study is placed on the closed-form representations of the field components of fluorescent emitters in layered environments in near- and far-field regions, the underlying motive is to understand the limits of spectral self-interference fluorescence microscopy in studying the dipole orientation of fluorophores. Since accurate calculations of the field components of arbitrarily polarized electric dipoles in layered environments are computationally very time-consuming, a method for finding their closed-form representations is proposed using the closed-form potential Green's functions previously developed for microwave applications. The method is verified on typical geometries used in spectral self-interference microscopy experiments, where a dipole emitter is positioned over a slab of SiO2 on top of a Si substrate. In addition to facilitating efficient calculation of near and intermediate fields of fluorescent emitters, closed-form Green's functions for fields would also play a crucial role in developing efficient and rigorous computational analysis and design tools for optical passive devices such as optical antennas by significantly improving the computational cost of the numerical solution of the integral equation.