Publications without Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/3

Browse

Search Results

Now showing 1 - 6 of 6
  • Placeholder
    Item
    Tactile perception of coated smooth surfaces
    (Institute of Electrical and Electronics Engineers Inc., 2023) 0000-0002-2443-8416; N/A; 0000-0002-6382-7334; Sezgin, Alperen; Er, Utku; Turkuz, Seniz; N/A; N/A; Department of Mechanical Engineering; Aliabbasi, Easa; Aydıngül, Volkan; Başdoğan, Çağatay; PhD Student; Master Student; Faculty Member; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 125489
    Although surface coating is commonly utilized in many industries for improving the aesthetics and functionality of the end product, our tactile perception of coated surfaces has not been investigated in depth yet. In fact, there are only a few studies investigating the effect of coating material on our tactile perception of extremely smooth surfaces having roughness amplitudes in the order of a few nanometers. Moreover, the current literature needs more studies linking the physical measurements performed on these surfaces to our tactile perception in order to further understand the adhesive contact mechanism leading to our percept. In this study, we first perform 2AFC experiments with 8 participants to quantify their tactile discrimination ability of 5 smooth glass surfaces coated with 3 different materials. We then measure the coefficient of friction between human finger and those 5 surfaces via a custom-made tribometer and their surface energies via Sessile drop test performed with 4 different liquids. The results of our psychophysical experiments and the physical measurements show that coating material has a strong influence on our tactile perception and human finger is capable of detecting differences in surface chemistry due to, possibly, molecular interactions.
  • Placeholder
    Publication
    Effect of waveform on tactile perception by electrovibration displayed on touch screens
    (IEEE Computer Soc, 2017) Guclu, Burak; N/A; Department of Mechanical Engineering; Department of Mechanical Engineering; Vardar, Yasemin; Başdoğan, Çağatay; PhD Student; Faculty Member; Graduate School of Sciences and Engineering; College of Engineering; N/A; 125489
    In this study, we investigated the effect of input voltage waveform on our haptic perception of electrovibration on touch screens. Through psychophysical experiments performed with eight subjects, we first measured the detection thresholds of electrovibration stimuli generated by sinusoidal and square voltages at various fundamental frequencies. We observed that the subjects were more sensitive to stimuli generated by square wave voltage than sinusoidal one for frequencies lower than 60 Hz. Using Matlab simulations, we showed that the sensation difference of waveforms in low fundamental frequencies occurred due to the frequency-dependent electrical properties of human skin and human tactile sensitivity. To validate our simulations, we conducted a second experiment with another group of eight subjects. We first actuated the touch screen at the threshold voltages estimated in the first experiment and then measured the contact force and acceleration acting on the index fingers of the subjects moving on the screen with a constant speed. We analyzed the collected data in the frequency domain using the human vibrotactile sensitivity curve. The results suggested that Pacinian channel was the primary psychophysical channel in the detection of the electrovibration stimuli caused by all the square-wave inputs tested in this study. We also observed that the measured force and acceleration data were affected by finger speed in a complex manner suggesting that it may also affect our haptic perception accordingly.
  • Placeholder
    Publication
    A dynamic path planning approach for multirobot sensor-based coverage considering energy constraints
    (IEEE-Inst Electrical Electronics Engineers Inc, 2014) Yazici, Ahmet; Parlaktuna, Osman; Sipahioglu, Aydin; N/A; Kirlik, Gökhan; PhD Student; Graduate School of Sciences and Engineering; N/A
    Multirobot sensor-based coverage path planning determines a tour for each robot in a team such that every point in a given workspace is covered by at least one robot using its sensors. In sensor-based coverage of narrow spaces, i.e., obstacles lie within the sensor range, a generalized Voronoi diagram (GVD)-based graph can be used to model the environment. A complete sensor-based coverage path plan for the robot team can be obtained by using the capacitated arc routing problem solution methods on the GVD-based graph. Unlike capacitated arc routing problem, sensor-based coverage problem requires to consider two types of edge demands. Therefore, modified Ulusoy algorithm is used to obtain mobile robot tours by taking into account two different energy consumption cases during sensor-based coverage. However, due to the partially unknown nature of the environment, the robots may encounter obstacles on their tours. This requires a replanning process that considers the remaining energy capacities and the current positions of the robots. In this paper, the modified Ulusoy algorithm is extended to incorporate this dynamic planning problem. A dynamic path-planning approach is proposed for multirobot sensor-based coverage of narrow environments by considering the energy capacities of the mobile robots. The approach is tested in a laboratory environment using Pioneer 3-DX mobile robots. Simulations are also conducted for a larger test environment.
  • Placeholder
    Publication
    Recognition of haptic interaction patterns in dyadic joint object manipulation
    (IEEE Computer Society, 2015) KucukYılmaz, Ayse; N/A; Department of Computer Engineering; Department of Mechanical Engineering; Department of Computer Engineering; Department of Mechanical Engineering; Madan, Çığıl Ece; Sezgin, Tevfik Metin; Başdoğan, Çağatay; Master Student; Faculty Member; Faculty Member; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; 18632; 125489
    The development of robots that can physically cooperate with humans has attained interest in the last decades. Obviously, this effort requires a deep understanding of the intrinsic properties of interaction. Up to now, many researchers have focused on inferring human intents in terms of intermediate or terminal goals in physical tasks. On the other hand, working side by side with people, an autonomous robot additionally needs to come up with in-depth information about underlying haptic interaction patterns that are typically encountered during human-human cooperation. However, to our knowledge, no study has yet focused on characterizing such detailed information. In this sense, this work is pioneering as an effort to gain deeper understanding of interaction patterns involving two or more humans in a physical task. We present a labeled human-human-interaction dataset, which captures the interaction of two humans, who collaboratively transport an object in an haptics-enabled virtual environment. In the light of information gained by studying this dataset, we propose that the actions of cooperating partners can be examined under three interaction types: In any cooperative task, the interacting humans either 1) work in harmony, 2) cope with conflicts, or 3) remain passive during interaction. In line with this conception, we present a taxonomy of human interaction patterns; then propose five different feature sets, comprising force-, velocity-and power-related information, for the classification of these patterns. Our evaluation shows that using a multi-class support vector machine (SVM) classifier, we can accomplish a correct classification rate of 86 percent for the identification of interaction patterns, an accuracy obtained by fusing a selected set of most informative features by Minimum Redundancy Maximum Relevance (mRMR) feature selection method.
  • Placeholder
    Publication
    Tactile roughness perception of virtual gratings by electrovibration
    (IEEE Computer Society, 2020) Vardar, Yasemin; N/A; Department of Mechanical Engineering; Department of Mechanical Engineering; İşleyen, Aykut; Başdoğan, Çağatay; Master Student; Faculty Member; Graduate School of Sciences and Engineering; College of Engineering; N/A; 125489
    Realistic display of tactile textures on touch screens is a big step forward for haptic technology to reach a wide range of consumers utilizing electronic devices on a daily basis. Since the texture topography cannot be rendered explicitly by electrovibration on touch screens, it is important to understand how we perceive the virtual textures displayed by friction modulation via electrovibration. We investigated the roughness perception of real gratings made of plexiglass and virtual gratings displayed by electrovibration through a touch screen for comparison. In particular, we conducted two psychophysical experiments with ten participants to investigate the effect of spatial period and the normal force applied by finger on roughness perception of real and virtual gratings in macro size. We also recorded the contact forces acting on the participants' finger during the experiments. The results showed that the roughness perception of real and virtual gratings are different. We argue that this difference can be explained by the amount of fingerpad penetration into the gratings. For real gratings, penetration increased tangential forces acting on the finger, whereas for virtual ones where skin penetration is absent, tangential forces decreased with spatial period. Supporting our claim, we also found that increasing normal force increases the perceived roughness of real gratings while it causes an opposite effect for the virtual gratings. These results are consistent with the tangential force profiles recorded for both real and virtual gratings. In particular, the rate of change in tangential force (dF(t)/dt) as a function of spatial period and normal force followed trends similar to those obtained for the roughness estimates of real and virtual gratings, suggesting that it is a better indicator of the perceived roughness than the tangential force magnitude.
  • Placeholder
    Publication
    A review of surface haptics: enabling tactile effects on touch surfaces
    (Institute of Electrical and Electronics Engineers (IEEE) Computer Society, 2020) Giraud, Frederic; Levesque, Vincent; Choi, Seungmoon; Department of Mechanical Engineering; Department of Mechanical Engineering; Başdoğan, Çağatay; Faculty Member; College of Engineering; 125489
    In this article, we review the current technology underlying surface haptics that converts passive touch surfaces to active ones (machine haptics), our perception of tactile stimuli displayed through active touch surfaces (human haptics), their potential applications (human-machine interaction), and finally, the challenges ahead of us in making them available through commercial systems. This article primarily covers the tactile interactions of human fingers or hands with surface-haptics displays by focusing on the three most popular actuation methods: vibrotactile, electrostatic, and ultrasonic.