Publications without Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/3

Browse

Search Results

Now showing 1 - 10 of 989
  • Placeholder
    Publication
    Acetylene ligands stabilize atomically dispersed supported rhodium complexes under harsh conditions
    (Elsevier Science Sa, 2024) Hoffman, Adam S.; Hong, Jiyun; Perez-Aguilar, JorgeE.; Bare, Simon R.; Department of Chemical and Biological Engineering; Zhao, Yuxin; Öztulum, Samira Fatma Kurtoğlu; Uzun, Alper; Department of Chemical and Biological Engineering; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; College of Engineering
    Facile sintering of atomically dispersed supported noble metal catalysts at catalytically relevant temperatures, particularly under reducing conditions, poses a challenge for their practical applications. Some ligands, such as carbonyls, aid in improving the stability at the expense of severely suppressing the catalytic activity. Here, we demonstrate that substitution of the carbonyl ligands with reactive acetylene ligands can maintain the atomic dispersion of the supported mononuclear rhodium complex under harsh reducing conditions (>573 K), as confirmed by in -situ X-ray absorption near -edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopies. In contrast, the supported rhodium carbonyl complex aggregates into nanoclusters under identical conditions. Furthermore, our results indicate that the acetylene ligands provide this anti -sintering ability while retaining the hydrogenation activity.
  • Placeholder
    Publication
    Microfluidic pulse shaping methods for molecular communications
    (Elsevier, 2023) Department of Electrical and Electronics Engineering; Kahvazi Zadeh, Maryam; Bolhassan, Iman Mokari; Kuşcu, Murat; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering
    Molecular Communication (MC) is a bio-inspired communication modality that utilizes chemical signals in the form of molecules to exchange information between spatially separated entities. Pulse shaping is an important process in all communication systems, as it modifies the waveform of transmitted signals to match the characteristics of the communication channel for reliable and high-speed information transfer. In MC systems, the unconventional architectures of components, such as transmitters and receivers, and the complex, nonlinear, and time-varying nature of MC channels make pulse shaping even more important. While several pulse shaping methods have been theoretically proposed for MC, their practicality and performance are still uncertain. Moreover, the majority of recently proposed experimental MC testbeds that rely on microfluidics technology lack the incorporation of programmable pulse shaping methods, which hinders the accurate evaluation of MC techniques in practical settings. To address the challenges associated with pulse shaping in microfluidic MC systems, we provide a comprehensive overview of practical microfluidic chemical waveform generation techniques that have been experimentally validated and whose architectures can inform the design of pulse shaping methods for microfluidic MC systems and testbeds. These techniques include those based on hydrodynamic and acoustofluidic force fields, as well as electrochemical reactions. We also discuss the fundamental working mechanisms and system architectures of these techniques, and compare their performances in terms of spatiotemporal resolution, selectivity, system complexity, and other performance metrics relevant to MC applications, as well as their feasibility for practical MC applications.
  • Placeholder
    Publication
    Influence of soft segment structure, hydrogen bonding, and diisocyanate symmetry on morphology and properties of segmented thermoplastic polyurethanes and polyureas
    (Tubitak Scientific & Technological Research Council Turkey, 2023) Department of Chemistry; Yılgör, Emel; Yılgör, İskender; Department of Chemistry; College of Sciences
    A comprehensive review of the structure-morphology-property relations in segmented thermoplastic polyurethanes and polyureas (TPU) is provided. Special emphasis is given to the influence of the soft segment structure, polarity, and molecular weight, diisocyanate symmetry and the nature, extent, and strength of hydrogen bonding on the morphology and thermal and mechanical properties of TPUs. Experimental results obtained on composition-dependent TPU morphology and properties by various techniques were also compared by the morphology profiles generated by computational methods such as quantum mechanical calculations and molecular dynamics simulations.
  • Placeholder
    Publication
    Ris-aided angular-based hybrid beamforming design in mmwave massive mimo systems
    (IEEE, 2022) Koc, Asil; Tho Le-Ngoc; Department of Electrical and Electronics Engineering; Yıldırım, İbrahim; Başar, Ertuğrul; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering
    This paper proposes a reconfigurable intelligent surface (RIS)-aided and angular-based hybrid beamforming (AB-HBF) technique for the millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems. The proposed RIS-AB-HBF architecture consists of three stages: (i) RF beam-former, (ii) baseband (BB) precoder/combiner, and (iii) RIS phase shift design. First, in order to reduce the number of RF chains and the channel estimation overhead, RF beamformers are designed based on the 3D geometry-based mmWave channel model using slow time-varying angular parameters of the channel. Second, a BB precoder/combiner is designed by exploiting the reduced-size effective channel seen from the BB stages. Then, the phase shifts of the RIS are adjusted to maximize the achievable rate of the system via the nature-inspired particle swarm optimization (PSO) algorithm. Illustrative simulation results demonstrate that the use of RISs in the AB-HBF systems has the potential to provide more promising advantages in terms of reliability and flexibility in system design.
  • Placeholder
    Publication
    Boosting methylene blue adsorption capacity of an industrial waste-based geopolymer by depositing graphitic carbon nitride onto its surface: towards sustainable materials for wastewater treatment
    (Pergamon-Elsevier Science Ltd, 2024) Kaya-Ozkiper, Kardelen; Soyer-Uzun, Sezen; Department of Chemical and Biological Engineering; Uzun, Alper; Department of Chemical and Biological Engineering; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); College of Engineering
    Surface characteristics of a geopolymer (GP) from an industrial waste, red mud (RM), and metakaolin (MK), were tuned by depositing urea-derived graphitic carbon nitride (g-C3N4) onto its surface. Methylene blue (MB) adsorption measurements demonstrated that the resulting g-C3N4/RM-MK-GP offers an excellent MB uptake capacity of 170.9 mg g-1, much higher than those of either the GP or the g-C3N4. Kinetics measurements revealed that chemisorption has an important effect on adsorption. The regenerability of g-C3N4/RM-MK-GP was studied for up to four consecutive cycles. Differences between the adsorption capacities of g-C3N4 and g-C3N4/RM-MKGP were investigated by combining the power of various characterization tools. Results pointed out that surface functional groups associated with g-C3N4, surface hydroxyl and silanol groups of RM-MK-GP, together with exchangeable charge balancing cations of geopolymeric framework provide a unique structure for g-C3N4/RMMK-GP. This study presents a versatile route to produce a sustainable, efficient, and cheap adsorbent for wastewater treatment.
  • Placeholder
    Publication
    IDE-integrated microneedle arrays as fully biodegradable platforms for wearable/implantable capacitive biosensing
    (Institute of Electrical and Electronics Engineers Inc., 2023) Department of Electrical and Electronics Engineering; Ürey, Hakan; Mirzajani, Hadi; Department of Electrical and Electronics Engineering; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); College of Engineering
    Microneedle biosensors have emerged as a promising tool for in situ biomarker detection due to their minimally invasive nature and ability to interface with interstitial fluid (ISF). However, most previously demonstrated ones are limited to in situ detection of small molecules and ions, employing amperometry or potentiometry measurement techniques with electrical current or voltage output metrics, respectively, which may not be suitable for detecting large molecules, such as proteins. This letter presents an innovative approach utilizing a microneedle array integrated with an interdigitated electrode (MAIDE), enabling in situ capacitive detection and quantification of protein biomarkers. Following microneedle penetration, the interdigitated electrode array establishes direct contact with the solution, enabling real-time monitoring of interfacial capacitance modulations as the result of the binding reaction, leading to the acquisition of rich molecular data. Equivalent circuit model extraction followed by impedance spectroscopy for different concentrations of bovine serum albumin (BSA) indicated the suitability of the proposed platform in tracking the interfacial capacitance variations with respect to different BSA concentrations of 100, 10, and 1 μg/mL with a detection limit of 21 ng/mL. Furthermore, the device showed satisfactory results for biodegradability experiments where it disintegrated for a duration of 10 h. In addition, in vivo experiments show stable capacitance readings with (dC/C)% deviations less than 0.5%, indicating its potential for biodegradable wearable/implantable capacitive biosensing applications
  • Placeholder
    Publication
    Design and manufacturing of a hip joint motion simulator with a novel modular design approach
    (Springer Heidelberg, 2023) Mihcin, Senay; Department of Mechanical Engineering; Torabnia, Shams; Lazoğlu, İsmail; Department of Mechanical Engineering; Manufacturing and Automation Research Center (MARC); Graduate School of Sciences and Engineering; College of Engineering
    The study is aimed to develop a hip joint wear simulator using a modular design approach to help experimentally monitor and control critical wear parameters to validate in-silico wear models. The proper control and application of wear parameters such as the range of motion, and the applied force values while estimating the lost material due to wear are essential for thorough analysis of wear phenomena for artificial joints. The simulator's dynamics were first modeled, then dynamic loading data was used to calculate the forces, which were further used for topology optimization to reduce the forces acting on each joint. The reduction of the link weights, connected to the actuators, intends to improve the quality of motion transferred to the femoral head. The modular design approach enables topology-optimized geometry, associated gravitational and dynamic forces, resulting in a cost-effective, energy-efficient product. Moreover, this design allows integration of the subject specific data by allowing different boundary conditions following the requirements of industry 5.0. Overall, the in-vitro motion stimulations of the hip-joint prosthesis and the modular design approach used in the study might help improve the accuracy and the effectiveness of wear simulations, which could lead into the development of better and longer-lasting joint prostheses for all. The subject-specific and society-based daily life data implemented as boundary conditions enable inclusion of the personalized effects. Next, with the results of the simulator, CEN Workshop Agreement (CWA) application is intended to cover the personalized effects for previously excluded populations, providing solution to inclusive design for all.
  • Placeholder
    Publication
    Energy-efficient production control of a make-to-stock system with buffer- and time-based policies
    (Taylor and Francis Ltd., 2023) Karabağ, Oktay; Khayyati, Siamak; Department of Business Administration; Tan, Barış; Department of Business Administration; College of Administrative Sciences and Economics
    Increasing energy efficiency in manufacturing has significant environmental and cost benefits. Turning on or off a machine dynamically while considering the production rate requirements can offer substantial energy savings. In this work, we examine the optimal policies to control production and turn on and off a machine that operates in working, idle, off, and warmup modes for the case where demand inter-arrival, production, and warmup times have phase-type distributions. The optimal control problem that minimises the expected costs associated with the energy usage in different energy modes and the inventory and backlog costs is solved using a linear program associated with the underlying Markov Decision Process. We also present a matrix-geometric method to evaluate the steady-state performance of the system under a given threshold control policy. We show that when the inter-arrival time distribution is not exponential, the optimal control policy depends on both the current phase of the inter-arrival time and inventory position. The phase-dependent policy implemented by estimating the current phase based on the time elapsed since the last arrival yields a buffer- and time-based policy to control the energy mode and production. We show that policies that only use the inventory position information can be effective if the control parameters are chosen appropriately. However, the control policies that use both the inventory and time information further improve the performance.
  • Placeholder
    Publication
    The digital twin synchronization problem: framework, formulations, and analysis
    (Taylor & Francis Inc, 2023) Matta, Andrea; Department of Business Administration; Tan, Barış; Department of Business Administration; College of Administrative Sciences and Economics
    As the adoption of digital twins increases steadily, it is necessary to determine how to operate them most effectively and efficiently. In this article, the digital twin synchronization problem is introduced and defined formally. Frequent synchronizations would increase cost and data traffic congestion, whereas infrequent synchronizations would increase the bias of the predictions and yield wrong decisions. This work defines the synchronization problem variants in different contexts. To discuss the problem and its solution, the problem of determining when to synchronize an unreliable production system with its digital twin to minimize the average synchronization and bias costs is formulated and analyzed analytically. The state-independent, state-dependent, and full-information solutions have been determined by using a stochastic model of the system. Solving the synchronization problem using simulation is discussed, and an approximate policy is proposed. Our results show that the performance of the state-dependent policy is close to the optimal solution that can be obtained with full information and significantly better than the performance of the state-independent policy. Furthermore, the approximate periodic state-dependent policy yields near-optimal results. To operate digital twins more effectively, the digital twin synchronization problem must be considered and solved to determine the optimal synchronization policy.
  • Placeholder
    Publication
    Continuous-flow simulation of manufacturing systems with assembly/disassembly machines, multiple loops and general layout
    (Elsevier Sci Ltd, 2023) Scrivano, Salvatore; Tolio, Tullio; Department of Business Administration; Tan, Barış; Department of Business Administration; College of Administrative Sciences and Economics
    Performance evaluation methods are important to design and control manufacturing systems. Approximate analytical methods are fast, but they may be limited by the restrictive assumptions on the system. On the contrary, simulation has not specific limitations in its applicability, but the time to model and analyse a manufacturing system can increase as the level of detail addressed by the model increases. The main contribution of this study is presenting a computationally efficient methodology to simulate single-part continuous-flow manufacturing systems with assembly/disassembly machines, multiple loops, general layout and general inter-event time distributions. By using graph theory, a new method is presented to identify the machines causing slowdown, blocking and starvation in a general layout and determine the time before the occurrence of a state transition for each machine and the time before the fulfilment or depletion of each buffer. By advancing the time clock to the next event-time accordingly, the number of discrete events needed to be simulated is decreased compared to a discrete-event simulation with discrete flow of parts. As a result, the proposed method is on average 15 times faster than DES methods in the analysis of discrete-flow systems, and 110 times faster on average in the analysis of continuous-flow systems. The low computational time of the proposed method allows to simulate systems under general assumptions and in a very short time.