Publications without Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/3

Browse

Search Results

Now showing 1 - 10 of 22
  • Placeholder
    Publication
    Microfluidic pulse shaping methods for molecular communications
    (Elsevier, 2023) Department of Electrical and Electronics Engineering; Kahvazi Zadeh, Maryam; Bolhassan, Iman Mokari; Kuşcu, Murat; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering
    Molecular Communication (MC) is a bio-inspired communication modality that utilizes chemical signals in the form of molecules to exchange information between spatially separated entities. Pulse shaping is an important process in all communication systems, as it modifies the waveform of transmitted signals to match the characteristics of the communication channel for reliable and high-speed information transfer. In MC systems, the unconventional architectures of components, such as transmitters and receivers, and the complex, nonlinear, and time-varying nature of MC channels make pulse shaping even more important. While several pulse shaping methods have been theoretically proposed for MC, their practicality and performance are still uncertain. Moreover, the majority of recently proposed experimental MC testbeds that rely on microfluidics technology lack the incorporation of programmable pulse shaping methods, which hinders the accurate evaluation of MC techniques in practical settings. To address the challenges associated with pulse shaping in microfluidic MC systems, we provide a comprehensive overview of practical microfluidic chemical waveform generation techniques that have been experimentally validated and whose architectures can inform the design of pulse shaping methods for microfluidic MC systems and testbeds. These techniques include those based on hydrodynamic and acoustofluidic force fields, as well as electrochemical reactions. We also discuss the fundamental working mechanisms and system architectures of these techniques, and compare their performances in terms of spatiotemporal resolution, selectivity, system complexity, and other performance metrics relevant to MC applications, as well as their feasibility for practical MC applications.
  • Placeholder
    Publication
    Joint pulse index and spatial modulation
    (Institute of Electrical and Electronics Engineers, 2024) Aldirmaz-Colak, Sultan; Aydin, Erdogan; Gundem, Sumeyra; Celik, Yasin; Department of Electrical and Electronics Engineering; Başar, Ertuğrul; Department of Electrical and Electronics Engineering; College of Engineering
    According to the planned key performance indicator (KPI) standards, 6G technology should achieve higher throughput than 5G. More efficiency in transceiver schemes is required to meet this demand. In this study, we take advantage of spatial modulation (SM) and pulse index modulation (PIM) techniques to increase spectral efficiency. The proposed PIM-SM scheme utilizes well-localized and orthogonal Hermite-Gaussian pulses along with spatial indexing. Thanks to the orthogonality between pulses in the set, multiple pulses are transmitted together. The design, simulation, and analytical bit error rate performance derivations of PIM-SM are discussed in this letter to verify the viability and compatibility of pulse-based data transfer utilizing the spatial domain. The performance is compared with generalized code index modulation-spatial modulation (GCIM-SM), code index modulation-quadrature spatial modulation (CIM-QSM), and classical spatial modulation (SM) schemes.
  • Placeholder
    Publication
    Received signal and channel parameter estimation in molecular communications
    (IEEE-Inst Electrical Electronics Engineers Inc, 2024)  ; Department of Electrical and Electronics Engineering; Baydaş, O. Tansel; Akan, Özgür Barış; Department of Electrical and Electronics Engineering;  ; College of Engineering;  
    Molecular communication (MC) is a paradigm that employs molecules as information carriers, hence, requiring unconventional transceivers and detection techniques for the Internet of Bio-Nano Things (IoBNT). In this study, we provide a novel MC model that incorporates a spherical transmitter and receiver with partial absorption. This model offers a more realistic representation than receiver architectures in literature, e.g., passive or entirely absorbing configurations. An optimization-based technique utilizing particle swarm optimization (PSO) is employed to accurately estimate the cumulative number of molecules received. This technique yields nearly constant correction parameters and demonstrates a significant improvement of 5 times in terms of root mean square error (RMSE) compared to the literature. The estimated channel model provides an approximate analytical impulse response;hence, it is used for estimating channel parameters such as distance, diffusion coefficient, or a combination of both. The iterative maximum likelihood estimation (MLE) is applied for the parameter estimation, which gives consistent errors compared to the estimated Cramer-Rao Lower Bound (CLRB).
  • Placeholder
    Publication
    Guest editorial special feature on bio-chem-ICTs: synergies between bio/nanotechnologies and molecular communications
    (IEEE-Inst Electrical Electronics Engineers Inc, 2023) Stano, Pasquale; Egan, Malcolm; Barros, Michael T.; Ünlütürk, Bige Deniz; Payne, Gregory F.; Department of Electrical and Electronics Engineering; Kuşcu, Murat; Department of Electrical and Electronics Engineering;  ; College of Engineering;  
    The Transfer of 'information' via molecules is a theme that resonates across the realm of nature, underlying collective behavior, homeostasis, and many disorders and diseases, and potentially holding the answers to some of the life's most profound questions. The prospects of understanding and manipulating this natural modality of communication have attracted a significant research interest from information and communication theorists (ICT) over the past two decades. The aim is to provide novel means of understanding and engineering biological systems. These efforts have produced substantial body of literature that sets the groundwork for bio-inspired, artificial Molecular Communication (MC) systems. This ICT-based perspective has also contributed to the understanding of natural MC, with many of the results from these endeavors being published in this journal.
  • Placeholder
    Publication
    Microfluidic molecular communication transmitter based on hydrodynamic gating
    (IEEE-Inst Electrical Electronics Engineers Inc, 2024)  ; Department of Electrical and Electronics Engineering; Bolhassan, Iman Mokari; Abdalı, Ali; Department of Electrical and Electronics Engineering;  ; Graduate School of Sciences and Engineering; College of Engineering;  
    Molecular Communications (MC) is a bio-inspired paradigm for transmitting information using chemical signals, which can enable novel applications at the junction of biotechnology, nanotechnology, and information and communication technologies. However, designing efficient and reliable MC systems poses significant challenges due to the complex nature of the physical channel and the limitations of the micro/nanoscale transmitter and receiver devices. In this paper, we propose a practical microfluidic transmitter architecture for MC based on hydrodynamic gating, a widely utilized technique for generating chemical waveforms in microfluidic channels with high spatiotemporal resolution. We develop an approximate analytical model that can capture the fundamental characteristics of the generated molecular pulses, such as pulse width, pulse amplitude, and pulse delay, as functions of main system parameters, such as flow velocity and gating duration. We validate the accuracy of our model by comparing it with finite element simulations using COMSOL Multiphysics under various system settings. Our analytical model can enable the optimization of microfluidic transmitters for MC applications in terms of minimizing intersymbol interference and maximizing data transmission rate.
  • Placeholder
    Publication
    OFDM-based information harvesting
    (IEEE-Inst Electrical Electronics Engineers Inc, 2024) İlter, Mehmet C.; Wichman, Risto; Department of Electrical and Electronics Engineering; Pıhtılı, Mehmet Ertuğ; Başar, Ertuğrul; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; Communications Research and Innovation Laboratory (CoreLab)
    Considering the current capability in hardware design, wireless power transmission enables the next stage in the current consumer electronics revolution by reducing the dependency on the lifetime of the batteries in the devices. Information harvesting (IH) introduced a novel mechanism by enabling information transmission to the existing far-field wireless power transfer mechanisms. To do so, information bits are embedded into a transmitter entity at the wireless power transmitter inspired by index modulation techniques creating a communication link without sacrificing the operational objectives of the power transmitter. This letter proposes a new IH mechanism on top of orthogonal frequency division multiplexing-based far-field wireless power transfer mechanism. The benefits of the proposed IH mechanism are investigated in terms of harvested energy, achievable rate and reliability.
  • Placeholder
    Publication
    Autoencoder-based enhanced orthogonal time frequency space modulation
    (IEEE-Inst Electrical Electronics Engineers Inc, 2023) Department of Electrical and Electronics Engineering; Tek, Yusuf İslam; Doğukan, Ali Tuğberk; Başar, Ertuğrul; Department of Electrical and Electronics Engineering;  ; Graduate School of Sciences and Engineering; College of Engineering; Communications Research and Innovation Laboratory (CoreLab)
    Orthogonal time frequency space (OTFS) is a novel waveform that provides a superior performance in doubly-dispersive channels. Since it spreads information symbols across the entire delay-Doppler plane, OTFS can achieve full diversity. However, reliability still needs to be improved in OTFS systems to meet the stringent demands of future communication systems. To address this issue, we propose an autoencoder (AE)-based enhanced OTFS (AEE-OTFS) modulation scheme. By training an AE under an additive white Gaussian noise (AWGN) channel, a feasible mapper and demapper are learned to improve the error performance and decrease the detection complexity of the OTFS system. The learned mapper is used to map incoming bits into high-dimensional symbols while the learned demapper recovers the information bits in the delay-Doppler domain. Additionally, we derive a theoretical upper bound for the frame error rate (FER). Simulation results confirm that AEE-OTFS outperforms conventional OTFS in terms of FER under perfect and imperfect channel conditions. AEE-OTFS also enjoys low decoding complexity in addition to its superior error performance.
  • Placeholder
    Publication
    QC-LDPC codes from difference matrices and difference covering arrays
    (IEEE-Inst Electrical Electronics Engineers Inc, 2023) Donovan, Diane M.; Rao, Asha; Üsküplü, Elif; Department of Mathematics; Yazıcı, Emine Şule; Department of Mathematics;  ; College of Sciences;  
    We give a framework that generalizes LDPC code constructions using transversal designs or related structures such as mutually orthogonal Latin squares. Our constructions offer a broader range of code lengths and codes rates. Similar earlier constructions rely on the existence of finite fields of order a power of a prime, which significantly restricts the functionality of the resulting codes. In contrast, the LDPC codes constructed here are based on difference matrices and difference covering arrays, structures that are available for any order a, resulting in LDPC codes across a broader class of parameters, notably length a(a - 1), for all even a. Such values are not possible with earlier constructions, thus establishing the novelty of these new constructions. Specifically the codes constructed here satisfy the RC constraint and for a odd, have length a(2) and rate 1 - (4a - 3)/a(2), and for a even, length a(2) - a and rate at least 1 - (4a - 6)/(a(2 )- a). When 3 does not divide a, these LDPC codes have stopping distance at least 8. When a is odd and both 3 and 5 do not divide a, our construction delivers an infinite family of QC-LDPC codes with minimum distance at least 10. We also determine lower bounds for the stopping distance of the code. Further we include simulation results illustrating the performance of our codes. The BER and FER performance of our codes over AWGN (via simulation) is at least equivalent to codes constructed previously.
  • Placeholder
    Publication
    Analysis and optimization of duty-cycle in preamble-based random access networks
    (Springer, 2013) Fischione, C.; Park, P.; Department of Electrical and Electronics Engineering; Ergen, Sinem Çöleri; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 7211
    Duty-cycling has been proposed as an effective mechanism for reducing the energy consumption in wireless sensor networks (WSNs). Asynchronous duty-cycle protocols where the receiver wakes up periodically to check whether there is a transmission and the sender transmits preambles to check if the receiver is awake are widely used in WSNs due to the elimination of complex control mechanisms for topology discovery and synchronization. However, the intrinsic simplicity of the asynchronous mechanism has the drawback of smaller energy saving potential that requires the optimization of the duty cycle parameters. In this paper, we propose a novel method for the optimization of the duty-cycle parameters in preamble-based random access networks based on the accurate modeling of delay, reliability and energy consumption as a function of listen time, sleep time, traffic rate and medium access control (MAC) protocol parameters. The challenges for modeling are the random access MAC and the sleep policy of the receivers, which make it impossible to determine the exact time of data packet transmissions, and thus difficult to investigate the performance indicators given by the delay, reliability and energy consumption to successfully receive packets. An analysis of these indicators is developed as a function of the relevant parameters of the network and it is used in the minimization of the energy consumption subject to delay and reliability requirements. The optimization provides significant reduction of the energy consumption compared to the previously proposed protocols in the literature.
  • Placeholder
    Publication
    Low complexity turbo-equalization: a clustering approach
    (Institute of Electrical and Electronics Engineers (IEEE), 2014) Kim, Kyeongyeon; Choi, Jun Won; Singer, Andrew C.; Department of Electrical and Electronics Engineering; Kozat, Süleyman Serdar; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 177972
    We introduce a low complexity approach to iterative equalization and decoding, or "turbo equalization", which uses clustered models to better match the nonlinear relationship that exists between likelihood information from a channel decoder and the symbol estimates that arise in soft-input channel equalization. The introduced clustered turbo equalizer uses piecewise linear models to capture the nonlinear dependency of the linear minimum mean square error (MMSE) symbol estimate on the symbol likelihoods produced by the channel decoder and maintains a computational complexity that is only linear in the channel memory. By partitioning the space of likelihood information from the decoder based on either hard or soft clustering and using locally-linear adaptive equalizers within each clustered region, the performance gap between the linear MMSE turbo equalizers and low-complexity least mean square (LMS)-based linear turbo equalizers can be narrowed.