Publications without Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/3

Browse

Search Results

Now showing 1 - 2 of 2
  • Placeholder
    Publication
    An efficient 2-party private function evaluation protocol based on half gates
    (Oxford Univ Press, 2019) Bingol, Muhammed Ali; Kiraz, Mehmet Sabir; Levi, Albert; N/A; Biçer, Osman; PhD Student; Graduate School of Sciences and Engineering; N/A
    Private function evaluation (PFE) is a special case of secure multi-party computation (MPC), where the function to be computed is known by only one party. PFE is useful in several real-life applications where an algorithm or a function itself needs to remain secret for reasons such as protecting intellectual property or security classification level. In this paper, we focus on improving 2-party PFE based on symmetric cryptographic primitives. In this respect, we look back at the seminal PFE framework presented by Mohassel and Sadeghian at Eurocrypt'13. We show how to adapt and utilize the well-known half gates garbling technique (Zahur et al., Eurocrypt'15) to their constant-round 2-party PFE scheme. Compared to their scheme, our resulting optimization significantly improves the efficiency of both the underlying Oblivious Evaluation of Extended Permutation (OEP) and secure 2-party computation (2PC) protocols, and yields a more than 40% reduction in overall communication cost (the computation time is also slightly decreased and the number of rounds remains unchanged).
  • Placeholder
    Publication
    Online optimization of first-responder routes in disaster response logistics
    (IBM, 2020) N/A; Department of Industrial Engineering; Shiri, Davood; Salman, Fatma Sibel; PhD Student; Faculty Member; Department of Industrial Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 178838
    After a disaster, first responders should reach critical locations in the disaster-affected region in the shortest time. However, road network edges can be damaged or blocked by debris. Since response time is crucial, relief operations may start before knowing which edges are blocked. A blocked edge is revealed online when it is visited at one o f its end-nodes. Multiple first-responder teams, who can communicate the blockage information, gather initially at an origin node and are assigned to target destinations (nodes) in the disaster-affected area. We consider multiple teams assigned to one destination. The objective is to find an online travel plan such that at least one of the teams finds a route from the origin to the destination in minimum time. This problem is known as the online multi-agent Canadian traveler problem. We develop an effective online heuristic policy and test it on real city road networks as well as randomly generated networks leading to instances with multiple blockages. We compare the performance of the online strategy with the offline optimum and obtain an average competitive ratio of 1.164 over 70,100 instances with varying parameter values.