Publications without Fulltext
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/3
Browse
2 results
Search Results
Publication Metadata only A support function based algorithm for optimization with eigenvalue constraints(Siam Publications, 2017) N/A; Department of Mathematics; Mengi, Emre; Faculty Member; Department of Mathematics; College of Sciences; 113760Optimization of convex functions subject to eigenvalue constraints is intriguing because of peculiar analytical properties of eigenvalue functions and is of practical interest because of a wide range of applications in fields such as structural design and control theory. Here we focus on the optimization of a linear objective subject to a constraint on the smallest eigenvalue of an analytic and Hermitian matrix-valued function. We propose a numerical approach based on quadratic support functions that overestimate the smallest eigenvalue function globally. the quadratic support functions are derived by employing variational properties of the smallest eigenvalue function over a set of Hermitian matrices. We establish the local convergence of the algorithm under mild assumptions and deduce a precise rate of convergence result by viewing the algorithm as a fixed point iteration. the convergence analysis reveals that the algorithm is immune to the nonsmooth nature of the smallest eigenvalue. We illustrate the practical applicability of the algorithm on the pseudospectral functions.Publication Metadata only Big Heegner point Kolyvagin system for a family of modular forms(Springer International Publishing Ag, 2014) Department of Mathematics; Büyükboduk, Kazım; Faculty Member; Department of Mathematics; College of Sciences; N/AThe principal goal of this paper is to develop Kolyvagin's descent to apply with the big Heegner point Euler system constructed by Howard for the big Galois representation attached to a Hida family of elliptic modular forms. In order to achieve this, we interpolate and control the Tamagawa factors attached to each member of the family at bad primes, which should be of independent interest. Using this, we then work out the Kolyvagin descent on the big Heegner point Euler system so as to obtain a big Kolyvagin system that interpolates the collection of Kolyvagin systems obtained by Fouquet for each member of the family individually. This construction has standard applications to Iwasawa theory, which we record at the end.