Publications with Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    PublicationOpen Access
    Bioarchaeology of Neolithic Çatalhöyük reveals fundamental transitions in health, mobility, and lifestyle in early farmers
    (National Academy of Sciences, 2019) Department of Archeology and History of Art; Haddow, Scott Donald; Department of Archeology and History of Art; Graduate School of Social Sciences and Humanities
    The transition from a human diet based exclusively on wild plants and animals to one involving dependence on domesticated plants and animals beginning 10,000 to 11,000 y ago in Southwest Asia set into motion a series of profound health, lifestyle, social, and economic changes affecting human populations throughout most of the world. However, the social, cultural, behavioral, and other factors surrounding health and lifestyle associated with the foraging-to-farming transition are vague, owing to an incomplete or poorly understood contextual archaeological record of living conditions. Bioarchaeological investigation of the extraordinary record of human remains and their context from Neolithic Çatalhöyük (7100–5950 cal BCE), a massive archaeological site in south-central Anatolia (Turkey), provides important perspectives on population dynamics, health outcomes, behavioral adaptations, interpersonal conflict, and a record of community resilience over the life of this single early farming settlement having the attributes of a protocity. Study of Çatalhöyük human biology reveals increasing costs to members of the settlement, including elevated exposure to disease and labor demands in response to community dependence on and production of domesticated plant carbohydrates, growing population size and density fueled by elevated fertility, and increasing stresses due to heightened workload and greater mobility required for caprine herding and other resource acquisition activities over the nearly 12 centuries of settlement occupation. These changes in life conditions foreshadow developments that would take place worldwide over the millennia following the abandonment of Neolithic Çatalhöyük, including health challenges, adaptive patterns, physical activity, and emerging social behaviors involving interpersonal violence.
  • Thumbnail Image
    PublicationOpen Access
    Using Y-chromosome capture enrichment to resolve haplogroup H2 shows new evidence for a two-path Neolithic expansion to Western Europe
    (Nature Publishing Group (NPG), 2021) Rohrlach, A.B.; Papac, L.; Childebayeva, A.; Rivollat, M.; Villalba Mouco, V.; Neumann, G.U.; Penske, S.; Skourtanioti, E.; van de Loosdrecht, M.; Akar, M.; Boyadzhiev, K.; Boyadzhiev, Y.; Deguilloux, M.F.; Dobes, M.; Erdal, Y.S.; Ernée, M.; Frangipane, M.; Furmanek, M.; Friederich, S.; Ghesquière, E.; Ha?uszko, A.; Hansen, S.; Küßner, M.; Mannino, M.; Reinhold, S.; Rottier, S.; Salazar García, D.C.; Diaz, J.S.; Stockhammer, P.W.; de Togores Muñoz, C.R.; Yener, K.A.; Posth, C.; Krause, J.; Herbig, A.; Haak, W.; Department of Archeology and History of Art; Özbal, Rana; Faculty Member; Department of Archeology and History of Art; College of Social Sciences and Humanities; 55583
    Uniparentally-inherited markers on mitochondrial DNA (mtDNA) and the non-recombining regions of the Y chromosome (NRY), have been used for the past 30 years to investigate the history of humans from a maternal and paternal perspective. Researchers have preferred mtDNA due to its abundance in the cells, and comparatively high substitution rate. Conversely, the NRY is less susceptible to back mutations and saturation, and is potentially more informative than mtDNA owing to its longer sequence length. However, due to comparatively poor NRY coverage via shotgun sequencing, and the relatively low and biased representation of Y-chromosome variants on capture assays such as the 1240 k, ancient DNA studies often fail to utilize the unique perspective that the NRY can yield. Here we introduce a new DNA enrichment assay, coined YMCA (Y-mappable capture assay), that targets the ""mappable"" regions of the NRY. We show that compared to low-coverage shotgun sequencing and 1240 k capture, YMCA significantly improves the mean coverage and number of sites covered on the NRY, increasing the number of Y-haplogroup informative SNPs, and allowing for the identification of previously undiscovered variants. To illustrate the power of YMCA, we show that the analysis of ancient Y-chromosome lineages can help to resolve Y-chromosomal haplogroups. As a case study, we focus on H2, a haplogroup associated with a critical event in European human history: the Neolithic transition. By disentangling the evolutionary history of this haplogroup, we further elucidate the two separate paths by which early farmers expanded from Anatolia and the Near East to western Europe.
  • Thumbnail Image
    PublicationOpen Access
    Archaeogenetic analysis of Neolithic sheep from Anatolia suggests a complex demographic history since domestication
    (Nature Portfolio, 2021) Yurtman, Erinç; Özer, Onur; Yüncü, Eren; Dağtaş, Nihan Dilşad; Koptekin, Dilek; Çakan, Yasin Gökhan; Özkan, Mustafa; Akbaba, Ali; Kaptan, Damla; Atağ, Gözde; Vural, Kıvılcım Başak; Gündem, Can Yümni; Martin, Louise; Kılınç, Gülşah Merve; Ghalichi, Ayshin; Açan, Sinan Can; Yaka, Reyhan; Sağlıcan, Ekin; Lagerholm, Vendela Kempe; Krzewinska, Maja; Gunther, Torsten; Miranda, Pedro Morell; Pişkin, Evangelia; Sevketoğlu, Müge; Bilgin, C. Can; Atakuman, Ciğdem; Erdal, Yılmaz Selim; Sürer, Elif; Altınışık, N. Ezgi; Lenstra, Johannes A.; Yorulmaz, Sevgi; Abazari, Mohammad Foad; Hoseinzadeh, Javad; Baird, Douglas; Bıcakcı, Erhan; Çevik, Özlem; Gerritsen, Fokke; Gotherstrom, Anders; Somel, Mehmet; Togan, İnci; Özer, Füsun; Department of Archeology and History of Art; Özbal, Rana; Faculty Member; Department of Archeology and History of Art; College of Social Sciences and Humanities; 55583
    Sheep were among the first domesticated animals, but their demographic history is little understood. Here we analyzed nuclear polymorphism and mitochondrial data (mtDNA) from ancient central and west Anatolian sheep dating from Epipaleolithic to late Neolithic, comparatively with modern-day breeds and central Asian Neolithic/Bronze Age sheep (OBI). Analyzing ancient nuclear data, we found that Anatolian Neolithic sheep (ANS) are genetically closest to present-day European breeds relative to Asian breeds, a conclusion supported by mtDNA haplogroup frequencies. In contrast, OBI showed higher genetic affinity to present-day Asian breeds. These results suggest that the east-west genetic structure observed in present-day breeds had already emerged by 6000 BCE, hinting at multiple sheep domestication episodes or early wild introgression in southwest Asia. Furthermore, we found that ANS are genetically distinct from all modern breeds. Our results suggest that European and Anatolian domestic sheep gene pools have been strongly remolded since the Neolithic.