Publications with Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6

Browse

Search Results

Now showing 1 - 10 of 106
  • Thumbnail Image
    PublicationOpen Access
    Hydrothermal-electrochemical growth of heterogeneous zno: co films
    (SpringerOpen, 2017) Department of Chemistry; Akkaya, Ceren Yılmaz; Ünal, Uğur; PhD Student; Faculty Member; Department of Chemistry; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); College of Sciences; Graduate School of Sciences and Engineering
    BACKGROUND: Central venous cannulation is a necessary invasive procedure for fluid management, haemodynamic monitoring and vasoactive drug therapy. The right internal jugular vein (RIJV) is the preferred site. Enlargement of the jugular vein area facilitates catheterization and reduces complication rates. Common methods to enlarge the RIJV cross-sectional area are the Trendelenburg position and the Valsalva maneuver. OBJECTIVE: Compare the Trendelenburg position with upper-extremity venous return blockage using the tourniquet technique. DESIGN: Prospective clinical study. SETTING: University hospital. SUBJECTS AND METHODS: Healthy adult volunteers (American Society of Anesthesiologists class I) aged 18-45 years were included in the study. The first measurement was made when the volunteers were in the supine position. The RIJV diameter and cross-sectional area were measured from the apex of the triangle formed by the clavicle and the two ends of the sternocleidomastoid muscle, which is used for the conventional approach. The second measurement was performed in a 20 degrees Trendelenburg position. After the drainage of the veins using an Esbach bandage both arms were cuffed. The third measurement was made when tourniquets were inflated. MAIN OUTCOME MEASURE(S): Hemodynamic measurements and RIJV dimensions. RESULTS: In 65 volunteers the diameter and cross-sectional area of the RIJV were significantly widened in both Trendelenburg and tourniquet measurements compared with the supine position (P<.001 for both measures). Measurements using the upper extremity tourniquet were significantly larger than Trendelenburg measurements (P=.002 and <.001 for cross-sectional area and diameter, respectively). CONCLUSION: Channelling of the upper-extremity venous return to the jugular vein was significantly superior when compared with the Trendelenburg position and the supine position. LIMITATIONS: No catheterization and study limited to healthy volunteers.
  • Thumbnail Image
    PublicationOpen Access
    Enhanced sinterability, thermal conductivity and dielectric constant of glass-ceramics with PVA and BN additions
    (Multidisciplinary Digital Publishing Institute (MDPI), 2022) Akkasoğlu, Ufuk; Çiçek, Buğra; N/A; Department of Chemistry; Arıbuğa, Dilara; Balcı, Özge; Researcher; Department of Chemistry; Koç University AKKİM Boron-Based Materials _ High-technology Chemicals Research _ Application Center (KABAM) / Koç Üniversitesi AKKİM Bor Tabanlı Malzemeler ve İleri Teknoloji Kimyasallar Uygulama ve Araştırma Merkezi (KABAM); Graduate School of Sciences and Engineering; College of Sciences; N/A; 295531
    With the rapid development of the microelectronics industry, many efforts have been made to improve glass-ceramics' sinterability, thermal conductivity, and dielectric properties, which are essential components of electronic materials. In this study, low-alkali borosilicate glass-ceramics with PVA addition and glass-BN composites were prepared and successfully sintered at 770 degrees C. The phase composition, density, microstructure, thermal conductivity, and dielectric constant were investigated. It was shown that PVA addition contributes to the densification process of glass-ceramics (~88% relative density, with closed/open pores in the microstructure) and improves the thermal conductivity of glass material from 1.489 to 2.453 W/K.m. On the other hand, increasing BN addition improves microstructures by decreasing porosities and thus increasing relative densities. A glass-12 wt. % BN composite sample exhibited almost full densification after sintering and presented apparent and open pores of 2.6 and 0.08%, respectively. A high thermal conductivity value of 3.955 W/K.m and a low dielectric constant of 3.00 (at 5 MHz) were observed in this material. Overall, the resulting glass-ceramic samples showed dielectric constants in the range of 2.40-4.43, providing a potential candidate for various electronic applications.
  • Thumbnail Image
    PublicationOpen Access
    Improved superconducting properties in the Mg11B2 low activation superconductor prepared by low-temperature sintering
    (Nature Publishing Group (NPG), 2016) F. Cheng, Y.; Liu, Z. Ma; Hossain, M. S.; Department of Chemistry; Somer, Mehmet Suat; Faculty Member; Department of Chemistry; College of Sciences; 178882
    Mg11B2 has a great application prospect in the superconducting coils for fusion reactor as the “low activation superconductors”. The un-doped Mg11B2 and Cu-doped Mg11B2 bulks using 11B as a boron precursor were fabricated by low-temperature sintering in present work. It was found that the prepared Mg11B2 low activation superconductors exhibit better Jc performance than all of other Mg11B2 samples reported in previous studies. As for Cu doped Mg11B2, minor Cu addition can obviously improve the Mg11B2 grain crystallization and reduce the amount of MgO impurity. Hence, improved grain connectivity and higher Jc at low fields is obtained in Cu doped Mg11B2 samples. For un-doped samples, refined grains and more MgO impurity with proper size brought about more flux pinning centers, resulting in better Jc performance at high fields.
  • Thumbnail Image
    PublicationOpen Access
    Failures of the discourse of ethnicity: Turkey, Kurds, and the emerging Iraq
    (Sage, 2005) Department of Chemistry; Somer, Murat; Faculty Member; Department of Chemistry; College of Sciences; 110135
    This article analyzes the discursive-ideational barriers restricting regional cooperation by examining Turkey's relations with Iraqi Kurds from a critical, theoretical perspective in the context of Turkey's domestic reforms and its relations with the USA and the EU. It is argued that the ethnicity discourse undermines cooperation, insofar as it feeds the perception of rival groups with zero-sum interests. Presenting a simple model, the article argues that replacing the ethnicity discourse with alternative, post-ethnic discourses requires combining alternative discourses with policies that produce positive-sum interests, coordination between groups, and opportunities for joint collective actions. Hence, state capacity to formulate and implement such policies is crucial. Predictions and policy implications are generated accordingly. First, further reconciliation of Turkey's domestic Kurdish conflict through democratic and administrative reforms, EU integration, and the promotion of national-identity models that are more flexible and more reflective of diversity will facilitate cooperation with Iraqi Kurds. Second, prosperity and democratic stability in Iraq will help achieve a lasting resolution in Turkey. Third, regional cooperation requires that domestic and external actors promote the positive-sum perception of Turkish and Kurdish interests. Fourth, research can help by developing linguistic-analytical categories that transcend the narrow discourse of ethnicity in favor of discourses that reflect multiple and compatible group belongings.
  • Thumbnail Image
    PublicationOpen Access
    Grain boundary engineering with nano-scale InSb producing high performance InxCeyCo4Sb12+z skutterudite thermoelectrics
    (Elsevier, 2017) Li, Han; Su, Xianli; Tang, Xinfeng; Zhang, Qingjie; Uher, Ctirad; Snyder, G. Jeffrey; Department of Chemistry; Aydemir, Umut; Faculty Member; Department of Chemistry; College of Sciences; 58403
    Thermoelectric semiconductors based on CoSb3 hold the best promise for recovering industrial or automotive waste heat because of their high efficiency and relatively abundant, lead-free constituent elements. However, higher efficiency is needed before thermoelectrics reach economic viability for widespread use. In this study, n-type InxCeyCo4Sb12+z skutterudites with high thermoelectric performance are produced by combining several phonon scattering mechanisms in a panoscopic synthesis. Using melt spinning followed by spark plasma sintering (MS-SPS), bulk InxCeyCo4Sb12+z alloys are formed with grain boundaries decorated with nano-phase of InSb. The skutterudite matrix has grains on a scale of 100-200 nm and the InSb nano-phase with a typical size of 5-15 nm is evenly dispersed at the grain boundaries of the skutterudite matrix. Coupled with the presence of defects on the Sb sublattice, this multi-scale nanometer structure is exceptionally effective in scattering phonons and, therefore, InxCeyCo4Sb12/InSb nano-composites have very low lattice thermal conductivity and high zT values reaching in excess of 1.5 at 800 K.
  • Thumbnail Image
    PublicationOpen Access
    Synthesis of stable gold nanoparticles using linear polyethyleneimines and catalysis of both anionic and cationic azo dye degradation
    (Royal Society of Chemistry (RSC), 2020) Abkenar, Sirous Khabbaz; Ow-Yang, Cleva W.; N/A; Department of Chemistry; Çavuşlar, Özge; Acar, Havva Funda Yağcı; Faculty Member; Department of Chemistry; Graduate School of Sciences and Engineering; College of Sciences; N/A; N/A; N/A; 178902
    Reduction of auric acid with polyethyleneimine (PEI) provides a simple, low-cost alternative for the production of cationic gold nanoparticles (GNPs). However, linear PEI (lPEI) failed to produce small, colloidally stable GNPs, so far. Since lPEI is a polyelectrolyte, pH should be an important factor both in reduction and stabilization of GNPs and may be optimized to produce small and stable lPEI/GNPs. Cationic GNPs were produced by the direct reduction of auric acid in water with lPEI utilizing two different methods to dissolve the polymer: by protonation or at high temperature. The influence of pH on the particle formation and properties was studied over a wide pH range (3.5 to 10). The impacts of the PEI/Au mass ratio, polymer molecular weight (2.5 and 25 kDa) and post-synthetic pH on the particle properties were also studied. Best is to dissolve lPEI by protonation and to clean the GNPs via controlled centrifugal precipitation. The MW did not influence the hydrodynamic size, stability or particle shape, but low MW lPEI provided faceted particles. This simple one pot synthesis of small, stable cationic GNPs in water is a valuable, simple alternative for producing new cationic GNPs with even low molecular weight lPEI. Additionally, these GNPs were evaluated as catalysts in the degradation of methyl orange (MO) (anionic-zwitterionic) and methylene blue (MB) (cationic) azo dyes at different pH values. The fastest degradation of MO and MB was recorded at pH 7.5 and 3.5, respectively. Overall, this is a rare case where a single catalyst quickly and effectively catalyzes the degradation of both cationic and anionic dyes.
  • Thumbnail Image
    PublicationOpen Access
    LiMg0.1Co0.9BO3 as a positive electrode material for Li-ion batteries
    (Royal Society of Chemistry (RSC), 2018) Afyon, Semih; Department of Chemistry; Zor, Ceren; Somer, Mehmet Suat; Researcher; Faculty Member; Department of Chemistry; College of Sciences; Graduate School of Sciences and Engineering; N/A; 178882
    LiCoBO3 could be a promising cathode material given the electronic and ionic conductivity problems are addressed. Here, Mg substitution in LiCoBO3 is employed to stabilise the structure and improve the electrochemical performance. LiMg0.1Co0.9BO3 is synthesised for the first time via sol-gel method and Mg substitution in the structure is verified by X-ray powder diffraction and energy dispersive X-ray analyses. The electrochemical properties are investigated by galvanostatic cycling and cyclic voltammetry tests. The composite electrode with conductive carbon (reduced graphite oxide and carbon black) delivers a first discharge capacity of 32 mA h g(-1) within a 4.7-1.7 voltage window at a rate of 10 mA g(-1). The cycling is relatively stable compared to the unsubstituted LiCoBO3. Mg substitution may enhance the electrochemical performance of borate-based electrode materials when combined with suitable electrode design techniques.
  • Thumbnail Image
    PublicationOpen Access
    Dimerization of pyrrole
    (TÜBİTAK, 1998) Yurtsever, Mine; Department of Chemistry; Yurtsever, İsmail Ersin; Faculty Member; Department of Chemistry; College of Sciences; 7129
    Accurate ab-inito quantum mechanical calculations of pyrrole dimers are reported. The thermodynamical stabilities of dimers with alpha - alpha, alpha -beta, and beta - beta type linkages are compared in order to predict the possibilities of branching in polypyrroles. Calculations employing large basis sets and including electron correlation effects predict the alpha - alpha dimers as the most stable form. However, an alpha - beta type bonding requires only 1.5-2.0 kcal/mol, and the energy necessary to introduce a beta - beta type bond is 3.6-4.0 kcal/mol. These values show that a high degree of branching is possible even at room temperatures.
  • Thumbnail Image
    PublicationOpen Access
    HIPPIE: a new platform for ambient-pressure X-ray photoelectron spectroscopy at the MAX IV Laboratory
    (International Union of Crystallography (IUCr), 2021) Zhu, Suyun; Scardamaglia, Mattia; Kundsen, Jan; Sankari, Rami; Tarawneh, Hamed; Temperton, Robert; Pickworth, Louisa; Cavalca, Filippo; Wang, Chunlei; Tissot, Heloise; Weissenrieder, Jonas; Hagman, Benjamin; Gustafson, Johan; Lindgren, Fredrik; Kallquist, Ida; Maibach, Julia; Hahlin, Maria; Boix, Virginia; Gallo, Tamires; Rehman, Foqia; D'Acunto, Giulio; Schnadt, Joachim; Shavorskiy, Andrey; Department of Chemistry; Kaya, Sarp; Faculty Member; Department of Chemistry; College of Sciences; 116541
    HIPPIE is a soft X-ray beamline on the 3 GeV electron storage ring of the MAX IV Laboratory, equipped with a novel ambient-pressure X-ray photoelectron spectroscopy (APXPS) instrument. The endstation is dedicated to performing in situ and operando X-ray photoelectron spectroscopy experiments in the presence of a controlled gaseous atmosphere at pressures up to 30 mbar [1 mbar = 100 Pa] as well as under ultra-high-vacuum conditions. The photon energy range is 250 to 2200 eV in planar polarization and with photon fluxes >10(12) photons s(-1) (500 mA ring current) at a resolving power of greater than 10000 and up to a maximum of 32000. The endstation currently provides two sample environments: a catalysis cell and an electrochemical/liquid cell. The former allows APXPS measurements of solid samples in the presence of a gaseous atmosphere (with a mixture of up to eight gases and a vapour of a liquid) and simultaneous analysis of the inlet/outlet gas composition by online mass spectrometry. The latter is a more versatile setup primarily designed for APXPS at the solid-liquid (dip-and-pull setup) or liquid-gas (liquid microjet) interfaces under full electrochemical control, and it can also be used as an open port for ad hoc-designed non-standard APXPS experiments with different sample environments. The catalysis cell can be further equipped with an IR reflection-absorption spectrometer, allowing for simultaneous APXPS and IR spectroscopy of the samples. The endstation is set up to easily accommodate further sample environments.
  • Thumbnail Image
    PublicationOpen Access
    Rotational-state-changing collisions between N-2(+) and Rb at low energies
    (American Physical Society (APS), 2020) Doerfler, A. D.; Villarreal, P.; Gonzalez-Lezana, T.; Gianturco, F. A.; Willitsch, S.; Department of Chemistry; Yurtsever, İsmail Ersin; Faculty Member; Department of Chemistry; College of Sciences; 7129
    We present a theoretical study of rotationally elastic and inelastic collisions between molecular nitrogen ions and Rb atoms in the sub-Kelvin temperature regime prevalent in ion-atom hybrid trapping experiments. The cross sections for rotational excitation and de-excitation collisions were calculated using quantum-scattering methods on ab initio potential energy surfaces for the energetically lowest singlet electronic channel of the system. We find that the rotationally inelastic collision rates are at least an order of magnitude smaller than the charge-exchange rates found in this system, rendering inelastic processes a minor channel under the conditions of typical hybrid trapping experiments.