Publications with Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6

Browse

Search Results

Now showing 1 - 10 of 10
  • Thumbnail Image
    PublicationOpen Access
    Enhanced sinterability, thermal conductivity and dielectric constant of glass-ceramics with PVA and BN additions
    (Multidisciplinary Digital Publishing Institute (MDPI), 2022) Akkasoğlu, Ufuk; Çiçek, Buğra; N/A; Department of Chemistry; Arıbuğa, Dilara; Balcı, Özge; Researcher; Department of Chemistry; Koç University AKKİM Boron-Based Materials _ High-technology Chemicals Research _ Application Center (KABAM) / Koç Üniversitesi AKKİM Bor Tabanlı Malzemeler ve İleri Teknoloji Kimyasallar Uygulama ve Araştırma Merkezi (KABAM); Graduate School of Sciences and Engineering; College of Sciences; N/A; 295531
    With the rapid development of the microelectronics industry, many efforts have been made to improve glass-ceramics' sinterability, thermal conductivity, and dielectric properties, which are essential components of electronic materials. In this study, low-alkali borosilicate glass-ceramics with PVA addition and glass-BN composites were prepared and successfully sintered at 770 degrees C. The phase composition, density, microstructure, thermal conductivity, and dielectric constant were investigated. It was shown that PVA addition contributes to the densification process of glass-ceramics (~88% relative density, with closed/open pores in the microstructure) and improves the thermal conductivity of glass material from 1.489 to 2.453 W/K.m. On the other hand, increasing BN addition improves microstructures by decreasing porosities and thus increasing relative densities. A glass-12 wt. % BN composite sample exhibited almost full densification after sintering and presented apparent and open pores of 2.6 and 0.08%, respectively. A high thermal conductivity value of 3.955 W/K.m and a low dielectric constant of 3.00 (at 5 MHz) were observed in this material. Overall, the resulting glass-ceramic samples showed dielectric constants in the range of 2.40-4.43, providing a potential candidate for various electronic applications.
  • Thumbnail Image
    PublicationOpen Access
    Al-doped MgB2 materials studied using electron paramagnetic resonance and Raman spectroscopy
    (American Institute of Physics (AIP) Publishing, 2016) Erdem, Emre; Repp, Sergej; Weber, Stefan; N/A; Department of Chemistry; Bateni, Ali; Somer, Mehmet Suat; PhD Student; Faculty Member; Department of Chemistry; Graduate School of Sciences and Engineering; College of Sciences; N/A; 178882
    Undoped and aluminum (Al) doped magnesium diboride (MgB2) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB2 samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB2. Above a certain level of Al doping, enhanced conductive properties of MgB2 disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites. Published by AIP Publishing.
  • Thumbnail Image
    PublicationOpen Access
    Defect structure of ultrafine MgB2 nanoparticles
    (American Institute of Physics (AIP) Publishing, 2014) Repp, Sergej; Thomann, Ralf; Acar, Selçuk; Erdem, Emre; N/A; Department of Chemistry; Bateni, Ali; Somer, Mehmet Suat; PhD Student; Faculty Member; Department of Chemistry; Graduate School of Sciences and Engineering; College of Sciences; N/A; 178882
    Defect structure of MgB2 bulk and ultrafine particles, synthesized by solid state reaction route, have been investigated mainly by the aid of X-band electron paramagnetic resonance spectrometer. Two different amorphous Boron (B) precursors were used for the synthesis of MgB2, namely, boron 95 (purity 95%-97%, <1.5 mu m) and nanoboron (purity >98.5%, <250 nm), which revealed bulk and nanosized MgB2, respectively. Scanning and transmission electron microscopy analysis demonstrate uniform and ultrafine morphology for nanosized MgB2 in comparison with bulk MgB2. Powder X-ray diffraction data show that the concentration of the by-product MgO is significantly reduced when nanoboron is employed as precursor. It is observed that a significant average particle size reduction for MgB2 can be achieved only by using B particles of micron or nano size. The origin and the role of defect centers were also investigated and the results proved that at nanoscale MgB2 material contains Mg vacancies. Such vacancies influence the connectivity and the conductivity properties which are crucial for the superconductivity applications. (C) 2014 AIP Publishing LLC.
  • Thumbnail Image
    PublicationOpen Access
    Electron paramagnetic resonance and Raman spectroscopy studies on carbon-doped MgB2 superconductor nanomaterials
    (American Institute of Physics (AIP) Publishing, 2015) Erdem, Emre; Repp, Sergej; Acar, Selçuk; Kokal, İlkin; Haessler, Wolfgang; Weber, Stefan; N/A; Department of Chemistry; Bateni, Ali; Somer, Mehmet Suat; PhD Student; Faculty Member; Department of Chemistry; Graduate School of Sciences and Engineering; College of Sciences; N/A; 178882
    Undoped and carbon-doped magnesium diboride (MgB2) samples were synthesized using two sets of mixtures prepared from the precursors, amorphous nanoboron, and as-received amorphous carbon-doped nanoboron. The microscopic defect structures of carbon-doped MgB2 samples were systematically investigated using X-ray powder diffraction, Raman and electron paramagnetic resonance spectroscopy. Mg vacancies and C-related dangling-bond active centers could be distinguished, and sp(3)-hybridized carbon radicals were detected. A strong reduction in the critical temperature T-c was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra. (C) 2015 AIP Publishing LLC.
  • Thumbnail Image
    PublicationOpen Access
    Solvation of carbonaceous molecules by para-H2 and ortho-D2clusters. II. Fullerenes
    (American Institute of Physics (AIP) Publishing, 2016) Calvo, F.; Department of Chemistry; Yurtsever, İsmail Ersin; Doctor; Department of Chemistry; College of Sciences; 7129
    The coating of various fullerenes by para-hydrogen and ortho-deuterium molecules has been computationally studied as a function of the solvent amount. Rotationally averaged interaction potentials for structureless hydrogen molecules are employed to model their interaction with neutral or charged carbonaceous dopants containing between 20 and 240 atoms, occasionally comparing different fullerenes having the same size but different shapes. The solvation energy and the size of the first solvation shell obtained from path-integral molecular dynamics simulations at 2 K show only minor influence on the dopant charge and on the possible deuteration of the solvent, although the shell size is largest for ortho-D-2 coating cationic fullerenes. Nontrivial finite size effects have been found with the shell size varying non-monotonically close to its completion limit. For fullerenes embedded in large hydrogen clusters, the shell size and solvation energy both follow linear scaling with the fullerene size. The shell sizes obtained for C-60(+) and C-70(+) are close to 49 and 51, respectively, and agree with mass spectrometry experiments.
  • Thumbnail Image
    PublicationOpen Access
    Solvation of carbonaceous molecules by para-H-2 and ortho-D-2 clusters. I. Polycyclic aromatic hydrocarbons
    (American Institute of Physics (AIP) Publishing, 2016) Calvo, F.; Department of Chemistry; Yurtsever, İsmail Ersin; Faculty Member; Department of Chemistry; College of Sciences; 7129
    This work theoretically examines the progressive coating of planar polycyclic aromatic hydrocarbon (PAH) molecules ranging from benzene to circumcoronene (C54H18) by para-hydrogen and ortho-deuterium. The coarse-grained Silvera-Goldman potential has been extended to model the interactions between hydrogen molecules and individual atoms of the PAH and parametrized against quantum chemical calculations for benzene-H-2. Path-integral molecular dynamics simulations at 2 K were performed for increasingly large amounts of hydrogen coating the PAH up to the first solvation shell and beyond. From the simulations, various properties were determined such as the size of the first shell and its thickness as well as the solvation energy. The degree of delocalization was notably quantified from an energy landscape perspective, by monitoring the fluctuations among inherent structures sampled by the trajectories. Our results generally demonstrate a high degree of localization owing to relatively strong interactions between hydrogen and the PAH, and qualitatively minor isotopic effects. In the limit of large hydrogen amounts, the shell size and solvation energy both follow approximate linear relations with the numbers of carbon and hydrogen in the PAH.
  • Thumbnail Image
    PublicationOpen Access
    Time-resolved local strain tracking microscopy for cell mechanics
    (American Institute of Physics (AIP) Publishing, 2016) Aydın, O.; Aksoy, B.; Akalın, O. B.; Department of Chemistry; Department of Mechanical Engineering; Bayraktar, Halil; Alaca, Burhanettin Erdem; Faculty Member; Department of Chemistry; Department of Mechanical Engineering; College of Sciences; College of Engineering
    A uniaxial cell stretching technique to measure time-resolved local substrate strain while simultaneously imaging adherent cells is presented. The experimental setup comprises a uniaxial stretcher platform compatible with inverted microscopy and transparent elastomer samples with embedded fluorescent beads. This integration enables the acquisition of real-time spatiotemporal data, which is then processed using a single-particle tracking algorithm to track the positions of fluorescent beads for the subsequent computation of local strain. The present local strain tracking method is demonstrated using polydimethylsiloxane (PDMS) samples of rectangular and dogbone geometries. The comparison of experimental results and finite element simulations for the two sample geometries illustrates the capability of the present system to accurately quantify local deformation even when the strain distribution is non-uniform over the sample. For a regular dogbone sample, the experimentally obtained value of local strain at the center of the sample is 77%, while the average strain calculated using the applied cross-head displacement is 48%. This observation indicates that considerable errors may arise when cross-head measurement is utilized to estimate strain in the case of non-uniform sample geometry. Finally, the compatibility of the proposed platform with biological samples is tested using a unibody PDMS sample with a well to contain cells and culture media. HeLa S3 cells are plated on collagen-coated samples and cell adhesion and proliferation are observed. Samples with adherent cells are then stretched to demonstrate simultaneous cell imaging and tracking of embedded fluorescent beads.
  • Thumbnail Image
    PublicationOpen Access
    Vibrational cooling of spin-stretched dimer states by He buffer gas: quantum calculations for Li(2)(a (3)Sigma(+)(u)) at ultralow energies
    (American Institute of Physics (AIP) Publishing, 2008) Bovino, S.; Bodo, E.; Gianturco, F. A.; Department of Chemistry; Yurtsever, İsmail Ersin; PhD Student; Department of Chemistry; College of Sciences; 7129
    The interaction between the triplet state of the lithium dimer, (7)Li(2), with (4)He is obtained from accurate ab initio calculations where the vibrational dependence of the potential is newly computed. Vibrational quenching dynamics within a coupled-channel quantum treatment is carried out at ultralow energies, and large differences in efficiency as a function of the initial vibrational state of the targets are found as one compares the triplet results with those of the singlet state of the same target.
  • Thumbnail Image
    PublicationOpen Access
    Heat transfer enhancement with actuation of magnetic nanoparticles suspended in a base fluid
    (American Institute of Physics (AIP) Publishing, 2012) Şeşen, Muhsincan; Tekşen, Yiğit; Mengüç, M. Pınar; Koşar, Ali; N/A; Department of Chemistry; Öztürk, Hande; Acar, Havva Funda Yağcı; Faculty Member; Department of Chemistry; Graduate School of Sciences and Engineering; College of Sciences; N/A; 178902
    In this study, we have experimentally demonstrated that heat transfer can be substantially increased by actuating magnetic nanoparticles inside a nanofluid. In order to materialize this, we have utilized a miniature heat transfer enhancement system based on the actuation of magnetic nanoparticles dispersed in a base fluid (water). This compact system consists of a pool filled with a nanofluid containing ferromagnetic nanoparticles, a heater, and two magnetic stirrers. The ferromagnetic particles within the pool were actuated with the magnetic stirrers. Single-phase heat transfer characteristics of the system were investigated at various fixed heat fluxes and were compared to those of stationary nanofluid (without magnetic stirring). The heat transfer enhancement realized by the circulation of ferromagnetic nanoparticles dispersed in a nanofluid was studied using the experimental setup. The temperatures were recorded from the readings of thin thermocouples, which were integrated to the heater surface. The surface temperatures were monitored against the input heat flux and data were processed to compare the heat transfer results of the configuration with magnetic stirrers to the heat transfer of the configuration without the magnetic stirrers. (C) 2012 American Institute of Physics
  • Thumbnail Image
    PublicationOpen Access
    Ionic dimers in He droplets: interaction potentials for Li-2(+)-He,Na-2(+)-He, and K-2(+)-He and stability of the smaller clusters
    (American Institute of Physics (AIP) Publishing, 2006) Bodo, E.; Yurtsever, M.; Gianturco, F. A.; Department of Chemistry; Yurtsever, İsmail Ersin; Faculty Member; Department of Chemistry; College of Sciences; 7129
    We present post Hartree-Fock calculations of the potential energy surfaces (PESs) for the ground electronic states of the three alkali dimer ions Li-2(+), Na-2(+), and K-2(+) interacting with neutral helium. The calculations were carried out for the frozen molecular equilibrium geometries and for an extensive range of the remaining two Jacobi coordinates, R and theta, for which a total of about 1000 points is generated for each surface. The corresponding raw data were then fitted numerically to produce analytic expressions for the three PESs, which were in turn employed to evaluate the bound states of the three trimers for their J=0 configurations: The final spatial features of such bound states are also discussed in detail. The possible behavior of additional systems with more helium atoms surrounding the ionic dopants is gleaned from further calculations on the structural stability of aggregates with up to six He atoms. The validity of a sum-of-potential approximation to yield realistic total energies of the smaller cluster is briefly discussed vis-a-vis the results from many-body calculations.