Publications with Fulltext
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6
Browse
2 results
Search Results
Publication Open Access Machine learning-enabled multiplexed microfluidic sensors(American Institute of Physics (AIP) Publishing, 2020) Yetişen, Ali Kemal; N/A; Department of Mechanical Engineering; Department of Electrical and Electronics Engineering; Dabbagh, Sajjad Rahmani; Rabbi, Fazle; Doğan, Zafer; Taşoğlu, Savaş; Faculty Member; Faculty Member; Department of Mechanical Engineering; Department of Electrical and Electronics Engineering; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); KU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR); Graduate School of Social Sciences and Humanities; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 280658; 291971High-throughput, cost-effective, and portable devices can enhance the performance of point-of-care tests. Such devices are able to acquire images from samples at a high rate in combination with microfluidic chips in point-of-care applications. However, interpreting and analyzing the large amount of acquired data is not only a labor-intensive and time-consuming process, but also prone to the bias of the user and low accuracy. Integrating machine learning (ML) with the image acquisition capability of smartphones as well as increasing computing power could address the need for high-throughput, accurate, and automatized detection, data processing, and quantification of results. Here, ML-supported diagnostic technologies are presented. These technologies include quantification of colorimetric tests, classification of biological samples (cells and sperms), soft sensors, assay type detection, and recognition of the fluid properties. Challenges regarding the implementation of ML methods, including the required number of data points, image acquisition prerequisites, and execution of data-limited experiments are also discussed.Publication Open Access Tipping the scale from disorder to alpha-helix: folding of amphiphilic peptides in the presence of macroscopic and molecular interfaces(Public Library of Science, 2015) Globisch, Christoph; Peter, Christine; N/A; Department of Mechanical Engineering; Dalgıçdır, Cahit; Sayar, Mehmet; PhD Student; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 109820Secondary amphiphilicity is inherent to the secondary structural elements of proteins. By forming energetically favorable contacts with each other these amphiphilic building blocks give rise to the formation of a tertiary structure. Small proteins and peptides, on the other hand, are usually too short to form multiple structural elements and cannot stabilize them internally. Therefore, these molecules are often found to be structurally ambiguous up to the point of a large degree of intrinsic disorder in solution. Consequently, their conformational preference is particularly susceptible to environmental conditions such as pH, salts, or presence of interfaces. In this study we use molecular dynamics simulations to analyze the conformational behavior of two synthetic peptides, LKKLLKLLKKLLKL (LK) and EAA LAEALAEALAE (EALA), with built-in secondary amphiphilicity upon forming an alpha-helix. We use these model peptides to systematically study their aggregation and the influence of macroscopic and molecular interfaces on their conformational preferences. We show that the peptides are neither random coils in bulk water nor fully formed alpha helices, but adopt multiple conformations and secondary structure elements with short lifetimes. These provide a basis for conformation-selection and population-shift upon environmental changes. Differences in these peptides' response to macroscopic and molecular interfaces (presented by an aggregation partner) can be linked to their inherent alpha-helical tendencies in bulk water. We find that the peptides' aggregation behavior is also strongly affected by presence or absence of an interface, and rather subtly depends on their surface charge and hydrophobicity.