Publications with Fulltext
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6
Browse
27 results
Search Results
Publication Open Access Wireless MRI-powered reversible orientation-locking capsule robot(Wiley, 2021) Erin, Önder; Boyvat, Mustafa; Lazovic, Jelena; Tiryaki, Mehmet Efe; Department of Mechanical Engineering; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; College of Engineering; School of Medicine; 297104Magnetic resonance imaging (MRI) scanners do not provide only high-resolution medical imaging but also magnetic robot actuation and tracking. However, the rotational motion capabilities of MRI-powered wireless magnetic capsule-type robots have been limited due to the very high axial magnetic field inside the MRI scanner. Medical functionalities of such robots also remain a challenge due to the miniature robot designs. Therefore, a wireless capsule-type reversible orientation-locking robot (REVOLBOT) is proposed that has decoupled translational motion and planar orientation change capability by locking and unlocking the rotation of a spherical ferrous bead inside the robot on demand. Such an on-demand locking/unlocking mechanism is achieved by a phase-changing wax material in which the ferrous bead is embedded inside. Controlled and on-demand hyperthermia and drug delivery using wireless power transfer-based Joule heating induced by external alternating magnetic fields are the additional features of this robot. The experimental feasibility of the REVOLBOT prototype with steerable navigation, medical function, and MRI tracking capabilities with an 1.33 Hz scan rate is demonstrated inside a preclinical 7T small-animal MRI scanner. The proposed robot has the potential for future clinical use in teleoperated minimally invasive treatment procedures with hyperthermia and drug delivery capabilities while being wirelessly powered and monitored inside MRI scanners.nd. Such an on-demand locking/unlocking mechanism is achieved by a phase-changing wax material in which the ferrous bead is embedded inside. Controlled and on-demand hyperthermia and drug delivery using wireless power transfer-based Joule heating induced by external alternating magnetic fields are the additional features of this robot. The experimental feasibility of the REVOLBOT prototype with steerable navigation, medical function, and MRI tracking capabilities with an 1.33 Hz scan rate is demonstrated inside a preclinical 7T small-animal MRI scanner. The proposed robot has the potential for future clinical use in teleoperated minimally invasive treatment procedures with hyperthermia and drug delivery capabilities while being wirelessly powered and monitored inside MRI scanners.Publication Open Access Finger-actuated microneedle array for sampling body fluids(Multidisciplinary Digital Publishing Institute (MDPI), 2021) Ahmadpour, Abdollah; Yetişen, Ali K.; Department of Mechanical Engineering; Taşoğlu, Savaş; Sarabi, Misagh Rezapour; Faculty Member; Department of Mechanical Engineering; KU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR); Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); College of Engineering; Graduate School of Sciences and Engineering; 291971; N/AThe application of microneedles (MNs) for minimally invasive biological fluid sampling is rapidly emerging, offering a user-friendly approach with decreased insertion pain and less harm to the tissues compared to conventional needles. Here, a finger-powered microneedle array (MNA) integrated with a microfluidic chip was conceptualized to extract body fluid samples. Actuated by finger pressure, the microfluidic device enables an efficient approach for the user to collect their own body fluids in a simple and fast manner without the requirement for a healthcare worker. The processes for extracting human blood and interstitial fluid (ISF) from the body and the flow across the device, estimating the amount of the extracted fluid, were simulated. The design in this work can be utilized for the minimally invasive personalized medical equipment offering a simple usage procedure.Publication Open Access High-performance magnetic FePt (L1(0)) surface microrollers towards medical imaging-guided endovascular delivery applications(Wiley, 2021) Bozüyük, U.; Suadiye, E.; Aghakhani, A.; Doğan, N.O.; Lazovic, J.; Tiryaki, M.E.; Schneider, M.; Karacakol, A.C.; Demir, S.O., Richter, G.; Department of Mechanical Engineering; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; College of Engineering; School of Medicine; 297104Controlled microrobotic navigation in the vascular system can revolutionize minimally invasive medical applications, such as targeted drug and gene delivery. Magnetically controlled surface microrollers have emerged as a promising microrobotic platform for controlled navigation in the circulatory system. Locomotion of micrororollers in strong flow velocities is a highly challenging task, which requires magnetic materials having strong magnetic actuation properties while being biocompatible. The L10-FePt magnetic coating can achieve such requirements. Therefore, such coating has been integrated into 8 µm-diameter surface microrollers and investigated the medical potential of the system from magnetic locomotion performance, biocompatibility, and medical imaging perspectives. The FePt coating significantly advanced the magnetic performance and biocompatibility of the microrollers compared to a previously used magnetic material, nickel. The FePt coating also allowed multimodal imaging of microrollers in magnetic resonance and photoacoustic imaging in ex vivo settings without additional contrast agents. Finally, FePt-coated microrollers showed upstream locomotion ability against 4.5 cm s?1 average flow velocity with real-time photoacoustic imaging, demonstrating the navigation control potential of microrollers in the circulatory system for future in vivo applications. Overall, L10-FePt is conceived as the key material for image-guided propulsion in the vascular system to perform future targeted medical interventions.Publication Open Access CRISPR-Cas-Integrated LAMP(Multidisciplinary Digital Publishing Institute (MDPI), 2022) N/A; Department of Mechanical Engineering; Özdalgıç, Berin; Taşoğlu, Savaş; Yığcı, Defne; Atçeken, Nazente; PhD Student; Faculty Member; Department of Mechanical Engineering; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); KU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR); Graduate School of Sciences and Engineering; College of Engineering; School of Medicine; N/A; 291971; N/A; N/APathogen-specific point-of-care (PoC) diagnostic tests have become an important need in the fight against infectious diseases and epidemics in recent years. PoC diagnostic tests are designed with the following parameters in mind: rapidity, accuracy, sensitivity, specificity, and ease of use. Molecular techniques are the gold standard for pathogen detection due to their accuracy and specificity. There are various limitations in adapting molecular diagnostic methods to PoC diagnostic tests. Efforts to overcome limitations are focused on the development of integrated molecular diagnostics by utilizing the latest technologies available to create the most successful PoC diagnostic platforms. With this point of view, a new generation technology was developed by combining loop-mediated isothermal amplification (LAMP) technology with clustered regularly interspaced short palindromic repeat (CRISPR)-associated (CRISPR-Cas) technology. This integrated approach benefits from the properties of LAMP technology, namely its high efficiency, short turnaround time, and the lack of need for a complex device. It also makes use of the programmable function of CRISPR-Cas technology and the collateral cleavage activity of certain Cas proteins that allow for convenient reporter detection. Thus, this combined technology enables the development of PoC diagnostic tests with high sensitivity, specificity, and ease of use without the need for complicated devices. In this review, we discuss the advantages and limitations of the CRISPR/Cas combined LAMP technology. We review current limitations to convert CRISPR combined LAMP into pathogen-specific PoC platforms. Furthermore, we point out the need to design more useful PoC platforms using microfabrication technologies by developing strategies that overcome the limitations of this new technology, reduce its complexity, and reduce the risk of contamination.Publication Open Access Wireless miniature magnetic phase-change soft actuators(Wiley, 2022) Tang, Y.; Li, M.; Wang, T.; Dong, X.; Hu, W.; Department of Mechanical Engineering; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; School of Medicine; College of Engineering; 297104Wireless miniature soft actuators are promising for various potential high-impact applications in medical, robotic grippers, and artificial muscles. However, these miniature soft actuators are currently constrained by a small output force and low work capacity. To address such challenges, a miniature magnetic phase-change soft composite actuator is reported. This soft actuator exhibits an expanding deformation and enables up to a 70 N output force and 175.2 J g(-1) work capacity under remote magnetic radio frequency heating, which are 10(6)-10(7) times that of traditional magnetic soft actuators. To demonstrate its capabilities, a wireless soft robotic device is first designed that can withstand 0.24 m s(-1) fluid flows in an artery phantom. By integrating it with a thermally-responsive shape-memory polymer and bistable metamaterial sleeve, a wireless reversible bistable stent is designed toward future potential angioplasty applications. Moreover, it can additionally locomote inside and jump out of granular media. At last, the phase-change actuator can realize programmable bending deformations when a specifically designed magnetization profile is encoded, enhancing its shape-programming capability. Such a miniature soft actuator provides an approach to enhance the mechanical output and versatility of magnetic soft robots and devices, extending their medical and other potential applications.Publication Open Access Programmable collective behavior in dynamically self-assembled mobile microrobotic swarms(Wiley, 2019) Yiğit, Berk; Alapan, Yunus; Department of Mechanical Engineering; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; College of EngineeringCollective control of mobile microrobotic swarms is indispensable for their potential high-impact applications in targeted drug delivery, medical diagnostics, parallel micromanipulation, and environmental sensing and remediation. Without integrated electronics for sensing and actuation, current microrobotic systems should rely on physical interactions among individual microrobots for local communication and cooperation. Here, it is shown that mobile microrobotic swarms with well-defined collective behavior can be designed by engineering magnetic interactions among individual units. Microrobots, dynamically self-assembled from magnetic microparticles into linear chains, locomote on surfaces in response to a precessing magnetic field. Control over precessing magnetic field allows engineering attractive and repulsive interactions among microrobots and, thus, collective order with well-defined spatial organization and stable parallel operation over macroscale distances (approximate to 1 cm) and through confining obstacles. The design approach described here addresses programmable assembly, propulsion, and collective behavior of dense mobile microrobot swarms simultaneously by engineering magnetic interactions and dynamic actuation of microrobots. The presented approach will advance swarm microrobotics by enabling facile and rapid formation of self-organized and reconfigurable microrobotic swarms with programmable collective order and stability.Publication Open Access Emerging applications of electrochemical impedance spectroscopy in tear film analysis(Multidisciplinary Digital Publishing Institute (MDPI), 2022) Department of Mechanical Engineering; Taşoğlu, Savaş; Özdalgıç, Berin; Gül, Münire; Atçeken, Nazente; Uygun, Zihni Onur; Faculty Member; PhD Student; Other; Department of Mechanical Engineering; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); KU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR); College of Engineering; 291971; 323683; N/A; N/A; N/AHuman tear film, with a flow rate of 1–3 µL/min, is a rich bodily fluid that transmits a variety of metabolites and hormones containing proteins, lipids and electrolytes that provide clues about ocular and systemic diseases. Analysis of disease biomarkers such as proteins, mRNA, enzymes and cytokines in the tear film, collected by noninvasive methods, can provide significant results for sustaining a predictive, preventive and personalized medicine regarding various diseases such as glaucoma, diabetic retinopathy, keratoconus, dry eye, cancer, Alzheimer’s disease, Parkinson’s disease and COVID-19. Electrochemical impedance spectroscopy (EIS) offers a powerful technique for analyzing these biomarkers. EIS detects electrical equivalent circuit parameters related to biorecognition of receptor–analyte interactions on the electrode surface. This method is advantageous as it performs a label-free detection and allows the detection of non-electroactive compounds that cannot be detected by direct electron transfer, such as hormones and some proteins. Here, we review the opportunities regarding the integration of EIS into tear fluid sampling approaches.Publication Open Access Leveraging building material as part of the in-plane robotic kinematic system for collective construction(Wiley, 2022) Leder, S.; Kim, H.; Oğuz, O.S.; Kubail Kalousdian, N.; Hartmann, V.N.; Menges, A.; Toussaint, M.; Department of Mechanical Engineering; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; College of Engineering; School of Medicine; 297104Although collective robotic construction systems are beginning to showcase how multi-robot systems can contribute to building construction by efficiently building low-cost, sustainable structures, the majority of research utilizes non-structural or highly customized materials. A modular collective robotic construction system based on a robotic actuator, which leverages timber struts for the assembly of architectural artifacts as well as part of the robot body for locomotion is presented. The system is co-designed for in-plane assembly from an architectural, robotic, and computer science perspective in order to integrate the various hardware and software constraints into a single workflow. The system is tested using five representative physical scenarios. These proof-of-concept demonstrations showcase three tasks required for construction assembly: the ability of the system to locomote, dynamically change the topology of connecting robotic actuators and timber struts, and collaborate to transport timber struts. As such, the groundwork for a future autonomous collective robotic construction system that could address collective construction assembly and even further increase the flexibility of on-site construction robots through its modularity is laid.Publication Open Access A tissue adhesion-controllable and biocompatible small-scale hydrogel adhesive robot(Wiley, 2022) Lee, Y.W.; Chun, S.; Son, D.; Hu, X.; Schneider, M.; Department of Mechanical Engineering; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; College of Engineering; School of Medicine; 297104Recently, the realization of minimally invasive medical interventions on targeted tissues using wireless small-scale medical robots has received an increasing attention. For effective implementation, such robots should have a strong adhesion capability to biological tissues and at the same time easy controlled detachment should be possible, which has been challenging. To address such issue, a small-scale soft robot with octopus-inspired hydrogel adhesive (OHA) is proposed. Hydrogels of different Young's moduli are adapted to achieve a biocompatible adhesive with strong wet adhesion by preventing the collapse of the octopus-inspired patterns during preloading. Introduction of poly(N-isopropylacrylamide) hydrogel for dome-like protuberance structure inside the sucker wall of polyethylene glycol diacrylate hydrogel provides a strong tissue attachment in underwater and at the same time enables easy detachment by temperature changes due to its temperature-dependent volume change property. It is finally demonstrated that the small-scale soft OHA robot can efficiently implement biomedical functions owing to strong adhesion and controllable detachment on biological tissues while operating inside the body. Such robots with repeatable tissue attachment and detachment possibility pave the way for future wireless soft miniature robots with minimally invasive medical interventions.Publication Open Access Liquid crystal eastomer actuated reconfigurable microscale kirigami metastructures(Wiley, 2021) Zhang, Mingchao; Shahsavan, Hamed; Guo, Yubing; Pena-Francesch, Abdon; Zhang, Yingying; Department of Mechanical Engineering; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; College of Engineering; School of Medicine; 297104Programmable actuation of metastructures with predesigned geometrical configurations has recently drawn significant attention in many applications, such as smart structures, medical devices, soft robotics, prosthetics, and wearable devices. Despite remarkable progress in this field, achieving wireless miniaturized reconfigurable metastructures remains a challenge due to the difficult nature of the fabrication and actuation processes at the micrometer scale. Herein, microscale thermo-responsive reconfigurable metasurfaces using stimuli-responsive liquid crystal elastomers (LCEs) is fabricated as an artificial muscle for reconfiguring the 2D microscale kirigami structures. Such structures are fabricated via two-photon polymerization with sub-micrometer precision. Through rationally designed experiments guided by simulations, the optimal formulation of the LCE artificial muscle is explored and the relationship between shape transformation behaviors and geometrical parameters of the kirigami structures is build. As a proof of concept demonstration, the constructs for temperature-dependent switching and information encryption is applied. Such reconfigurable kirigami metastructures have significant potential for boosting the fundamental small-scale metastructure research and the design and fabrication of wireless functional devices, wearables, and soft robots at the microscale as well.
- «
- 1 (current)
- 2
- 3
- »