Publications with Fulltext
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6
Browse
3 results
Search Results
Publication Open Access High-yield production of biohybrid microalgae for on-demand cargo delivery(Wiley, 2020) Akolpoğlu, Mukrime Birgul; Bozüyük, Uğur; Ceylan, Hakan; Department of Chemical and Biological Engineering; Department of Mechanical Engineering; Kızılel, Seda; Doğan, Nihal Olcay; Sitti, Metin; Faculty Member; Faculty Member; Department of Chemical and Biological Engineering; Department of Mechanical Engineering; College of Engineering; Graduate School of Sciences and Engineering; School of Medicine; 28376; N/A; 297104Biohybrid microswimmers exploit the swimming and navigation of a motile microorganism to target and deliver cargo molecules in a wide range of biomedical applications. Medical biohybrid microswimmers suffer from low manufacturing yields, which would significantly limit their potential applications. In the present study, a biohybrid design strategy is reported, where a thin and soft uniform coating layer is noncovalently assembled around a motile microorganism.Chlamydomonas reinhardtii(a single-cell green alga) is used in the design as a biological model microorganism along with polymer-nanoparticle matrix as the synthetic component, reaching a manufacturing efficiency of approximate to 90%. Natural biopolymer chitosan is used as a binder to efficiently coat the cell wall of the microalgae with nanoparticles. The soft surface coating does not impair the viability and phototactic ability of the microalgae, and allows further engineering to accommodate biomedical cargo molecules. Furthermore, by conjugating the nanoparticles embedded in the thin coating with chemotherapeutic doxorubicin by a photocleavable linker, on-demand delivery of drugs to tumor cells is reported as a proof-of-concept biomedical demonstration. The high-throughput strategy can pave the way for the next-generation generation microrobotic swarms for future medical active cargo delivery tasks.Publication Open Access On the mechanical response and microstructure evolution of NiCoCr single crystalline medium entropy alloys(Taylor _ Francis, 2018) Picak, S.; Liu, J.; Jozaghi, T.; Karaman, I.; Chumlyakov, Y. I.; Kireeva, I.; Department of Mechanical Engineering; Uzer, Benay; Canadinç, Demircan; Faculty Member; Department of Mechanical Engineering; College of Engineering; Graduate School of Sciences and Engineering; N/A; 23433Unusual strain hardening response and ductility of NiCoCr equiatomic alloy were investigated through microstructural analysis of [111], [110] and [123] single crystals deformed under tension. Nano-twinning prevailed at, as early as, 4% strain along the [110] orientation, providing a steady work hardening, and thereby a significant ductility. While single slip dominated in the [123] orientation at the early stages of deformation, multiple slip and nanotwinning was prominent in the [111] orientation. Significant dislocation storage capability and resistance to necking due to nanotwinning provided unprecedented ductility to NiCoCr medium entropy alloys, making it superior than quinary variants, and conventional low and medium stacking fault energy steels.Publication Open Access Soft actuators for real-world applications(Springer Nature, 2022) Li, Meng; Pal, Aniket; Aghakhani, Amirreza; Pena-Francesch, Abdon; Department of Mechanical Engineering; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; School of Medicine; College of Engineering; 297104Soft actuators are flexible and compliant and thus perfectly suited to interact with the human body. This Review discusses tethered, untethered and biohybrid soft actuation strategies, highlights promising real-world applications of soft robots and identifies key future challenges, such as implementing physical intelligence and end-of-life strategies. Inspired by physically adaptive, agile, reconfigurable and multifunctional soft-bodied animals and human muscles, soft actuators have been developed for a variety of applications, including soft grippers, artificial muscles, wearables, haptic devices and medical devices. However, the complex performance of biological systems cannot yet be fully replicated in synthetic designs. In this Review, we discuss new materials and structural designs for the engineering of soft actuators with physical intelligence and advanced properties, such as adaptability, multimodal locomotion, self-healing and multi-responsiveness. We examine how performance can be improved and multifunctionality implemented by using programmable soft materials, and highlight important real-world applications of soft actuators. Finally, we discuss the challenges and opportunities for next-generation soft actuators, including physical intelligence, adaptability, manufacturing scalability and reproducibility, extended lifetime and end-of-life strategies.