Publications with Fulltext
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6
Browse
2 results
Search Results
Publication Open Access Plasmon-coupled photocapacitor neuromodulators(American Chemical Society (ACS), 2020) Ülgüt, Burak; Çetin, Arif E.; N/A; N/A; Department of Molecular Biology and Genetics; Department of Electrical and Electronics Engineering; Department of Chemical and Biological Engineering; Melikov, Rustamzhon; Srivastava, Shashi Bhushan; Karatüm, Onuralp; Doğru-Yüksel, Itır Bakış; Jalali, Houman Bahmani; Sadeghi, Sadra; Dikbaş, Uğur Meriç; Kavaklı, İbrahim Halil; Nizamoğlu, Sedat; PhD Student; Researcher; PhD Student; PhD Student; Master Student; Faculty Member; Faculty Member; Department of Molecular Biology and Genetics; Department of Electrical and Electronics Engineering; Department of Chemical and Biological Engineering; Graduate School of Sciences and Engineering; College of Sciences; College of Engineering; N/A; N/A; N/A; N/A; N/A; N/A; N/A; 40319; 130295Efficient transduction of optical energy to bioelectrical stimuli is an important goal for effective communication with biological systems. For that, plasmonics has a significant potential via boosting the light-matter interactions. However, plasmonics has been primarily used for heat-induced cell stimulation due to membrane capacitance change (i.e., optocapacitance). Instead, here, we demonstrate that plasmonic coupling to photocapacitor biointerfaces improves safe and efficacious neuromodulating displacement charges for an average of 185% in the entire visible spectrum while maintaining the faradic currents below 1%. Hot-electron injection dominantly leads the enhancement of displacement current in the blue spectral window, and the nanoantenna effect is mainly responsible for the improvement in the red spectral region. The plasmonic photocapacitor facilitates wireless modulation of single cells at three orders of magnitude below the maximum retinal intensity levels, corresponding to one of the most sensitive optoelectronic neural interfaces. This study introduces a new way of using plasmonics for safe and effective photostimulation of neurons and paves the way toward ultrasensitive plasmon-assisted neurostimulation devices.Publication Open Access Characterizing the cellular response to nitrogen-doped carbon nanocups(Multidisciplinary Digital Publishing Institute (MDPI), 2019) Griffith, Amber S.; Zhang, Thomas D.; Burkert, Seth C.; Adıgüzel, Zelal; Star, Alexander; Saunders, William S.; Department of Molecular Biology and Genetics; Ayhan, Ceyda Açılan; Faculty Member; Department of Molecular Biology and Genetics; School of MedicineCarbon nanomaterials, specifically, carbon nanotubes (CNTs) have many potential applications in biology and medicine. Currently, this material has not reached its full potential for application due to the potential toxicity to mammalian cells, and the incomplete understanding of how CNTs interface with cells. The chemical composition and structural features of CNTs have been shown to directly affect their biological compatibility. The incorporation of nitrogen dopants to the graphitic lattice of CNTs results in a unique cup shaped morphology and minimal cytotoxicity in comparison to its undoped counterpart. In this study, we investigate how uniquely shaped nitrogen-doped carbon nanocups (NCNCs) interface with HeLa cells, a cervical cancer epithelial cultured cell line, and RPE-1 cells, an immortalized cultured epithelial cell line. We determined that NCNCs do not elicit a cytotoxic response in cells, and that they are uptaken via endocytosis. We have conjugated fluorescently tagged antibodies to NCNCs and shown that the protein-conjugated material is also capable of entering cells. This primes NCNCs to be a good candidate for subsequent protein modifications and applications in biological systems.