Publications with Fulltext
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6
Browse
2 results
Search Results
Publication Open Access Comparative spectroscopic investigation of Tm3+: tellurite glasses for 2-mu m lasing applications(Multidisciplinary Digital Publishing Institute (MDPI), 2018) Kurt, Adnan; Speghini, Adolfo; Bettinelli, Marco; Department of Electrical and Electronics Engineering; Department of Physics; Çankaya, Hüseyin; Görgülü, Adil Tolga; Sennaroğlu, Alphan; Researcher; Master Student; Faculty Member; Department of Electrical and Electronics Engineering; Department of Physics; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); College of Engineering; College of Sciences; N/A; N/A; 23851We performed a comparative spectroscopic analysis on three novel Tm3+: tellurite-based glasses with the following compositions Tm2O3: TeO2-ZnO (TeZnTm), Tm2O3: TeO2-Nb2O5 (TeNbTm), and Tm3+: TeO2-K2O-Nb2O5 (TeNbKTm), primarily for 2-mu m laser applications. Tellurite glasses were prepared at different doping concentrations in order to investigate the effect of Tm3+ ion concentration as well as host composition on the stimulated emission cross sections and the luminescence quantum efficiencies. By performing Judd-Ofelt analysis, we determined the average radiative lifetimes of the H-3(4) level to be 2.55 +/- 0.07 ms, 2.76 +/- 0.03 ms and 2.57 +/- 0.20 ms for the TeZnTm, TeNbTm and TeNbKTm samples, respectively. We clearly observed the effect of the cross-relaxation, which becomes significant at higher Tm2O3 concentrations, leading to the quenching of 1460-nm emission and enhancement of 1860-nm emission. Furthermore, with increasing Tm2O3 concentrations, we observed a decrease in the fluorescence lifetimes as a result of the onset of non-radiative decay. For the H-3(4) level, the highest obtained quantum efficiency was 32% for the samples with the lowest Tm2O3 ion concentration. For the 1860-nm emission band, the average emission cross section was determined to measure around 6.33 +/- 0.34 x 10(-21) cm(2), revealing the potential of thulium-doped tellurite gain media for 2-mu m laser applications in bulk and fiber configurations.Publication Open Access Advanced solid-state lasers 2019: focus issue introduction(Optical Society of America (OSA), 2020) Goodno, Gregory; Mirov, Sergey; Nilsson, Johan; Petersen, Alan; Sorokina, Irina; Taccheo, Stefano; Department of Electrical and Electronics Engineering; Department of Physics; Sennaroğlu, Alphan; Faculty Member; Department of Electrical and Electronics Engineering; Department of Physics; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); College of Engineering; College of Sciences; 23851This joint issue of Optics Express and Optical Materials Express features 17 state-of-the art articles written by authors who participated in the international conference Advanced Solid-State Lasers held in Vienna, Austria, from September 29 to October 3, 2019. This introduction provides a summary of these articles that cover numerous areas of solid-state lasers from materials research to sources and from design to experimental demonstration.