Publications with Fulltext
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6
Browse
6 results
Search Results
Publication Open Access Enhanced sinterability, thermal conductivity and dielectric constant of glass-ceramics with PVA and BN additions(Multidisciplinary Digital Publishing Institute (MDPI), 2022) Akkasoğlu, Ufuk; Çiçek, Buğra; N/A; Department of Chemistry; Arıbuğa, Dilara; Balcı, Özge; Researcher; Department of Chemistry; Koç University AKKİM Boron-Based Materials _ High-technology Chemicals Research _ Application Center (KABAM) / Koç Üniversitesi AKKİM Bor Tabanlı Malzemeler ve İleri Teknoloji Kimyasallar Uygulama ve Araştırma Merkezi (KABAM); Graduate School of Sciences and Engineering; College of Sciences; N/A; 295531With the rapid development of the microelectronics industry, many efforts have been made to improve glass-ceramics' sinterability, thermal conductivity, and dielectric properties, which are essential components of electronic materials. In this study, low-alkali borosilicate glass-ceramics with PVA addition and glass-BN composites were prepared and successfully sintered at 770 degrees C. The phase composition, density, microstructure, thermal conductivity, and dielectric constant were investigated. It was shown that PVA addition contributes to the densification process of glass-ceramics (~88% relative density, with closed/open pores in the microstructure) and improves the thermal conductivity of glass material from 1.489 to 2.453 W/K.m. On the other hand, increasing BN addition improves microstructures by decreasing porosities and thus increasing relative densities. A glass-12 wt. % BN composite sample exhibited almost full densification after sintering and presented apparent and open pores of 2.6 and 0.08%, respectively. A high thermal conductivity value of 3.955 W/K.m and a low dielectric constant of 3.00 (at 5 MHz) were observed in this material. Overall, the resulting glass-ceramic samples showed dielectric constants in the range of 2.40-4.43, providing a potential candidate for various electronic applications.Publication Open Access Al-doped MgB2 materials studied using electron paramagnetic resonance and Raman spectroscopy(American Institute of Physics (AIP) Publishing, 2016) Erdem, Emre; Repp, Sergej; Weber, Stefan; N/A; Department of Chemistry; Bateni, Ali; Somer, Mehmet Suat; PhD Student; Faculty Member; Department of Chemistry; Graduate School of Sciences and Engineering; College of Sciences; N/A; 178882Undoped and aluminum (Al) doped magnesium diboride (MgB2) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB2 samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB2. Above a certain level of Al doping, enhanced conductive properties of MgB2 disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites. Published by AIP Publishing.Publication Open Access Defect structure of ultrafine MgB2 nanoparticles(American Institute of Physics (AIP) Publishing, 2014) Repp, Sergej; Thomann, Ralf; Acar, Selçuk; Erdem, Emre; N/A; Department of Chemistry; Bateni, Ali; Somer, Mehmet Suat; PhD Student; Faculty Member; Department of Chemistry; Graduate School of Sciences and Engineering; College of Sciences; N/A; 178882Defect structure of MgB2 bulk and ultrafine particles, synthesized by solid state reaction route, have been investigated mainly by the aid of X-band electron paramagnetic resonance spectrometer. Two different amorphous Boron (B) precursors were used for the synthesis of MgB2, namely, boron 95 (purity 95%-97%, <1.5 mu m) and nanoboron (purity >98.5%, <250 nm), which revealed bulk and nanosized MgB2, respectively. Scanning and transmission electron microscopy analysis demonstrate uniform and ultrafine morphology for nanosized MgB2 in comparison with bulk MgB2. Powder X-ray diffraction data show that the concentration of the by-product MgO is significantly reduced when nanoboron is employed as precursor. It is observed that a significant average particle size reduction for MgB2 can be achieved only by using B particles of micron or nano size. The origin and the role of defect centers were also investigated and the results proved that at nanoscale MgB2 material contains Mg vacancies. Such vacancies influence the connectivity and the conductivity properties which are crucial for the superconductivity applications. (C) 2014 AIP Publishing LLC.Publication Open Access Electron paramagnetic resonance and Raman spectroscopy studies on carbon-doped MgB2 superconductor nanomaterials(American Institute of Physics (AIP) Publishing, 2015) Erdem, Emre; Repp, Sergej; Acar, Selçuk; Kokal, İlkin; Haessler, Wolfgang; Weber, Stefan; N/A; Department of Chemistry; Bateni, Ali; Somer, Mehmet Suat; PhD Student; Faculty Member; Department of Chemistry; Graduate School of Sciences and Engineering; College of Sciences; N/A; 178882Undoped and carbon-doped magnesium diboride (MgB2) samples were synthesized using two sets of mixtures prepared from the precursors, amorphous nanoboron, and as-received amorphous carbon-doped nanoboron. The microscopic defect structures of carbon-doped MgB2 samples were systematically investigated using X-ray powder diffraction, Raman and electron paramagnetic resonance spectroscopy. Mg vacancies and C-related dangling-bond active centers could be distinguished, and sp(3)-hybridized carbon radicals were detected. A strong reduction in the critical temperature T-c was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra. (C) 2015 AIP Publishing LLC.Publication Open Access Glioma-on-a-chip models(Multidisciplinary Digital Publishing Institute (MDPI), 2021) İlçi, İrem Sultan; Department of Mechanical Engineering; N/A; N/A; Önder, Tuğba Bağcı; Taşoğlu, Savaş; Üstün, Merve; Dabbagh, Sajjad Rahmani; Faculty Member; Department of Mechanical Engineering; KU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR); Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); School of Medicine; College of Engineering; Graduate School of Sciences and Engineering; Graduate School of Social Sciences and Humanities; 184359; 291971; N/A; N/AGlioma, as an aggressive type of cancer, accounts for virtually 80% of malignant brain tumors. Despite advances in therapeutic approaches, the long-term survival of glioma patients is poor (it is usually fatal within 12-14 months). Glioma-on-chip platforms, with continuous perfusion, mimic in vivo metabolic functions of cancer cells for analytical purposes. This offers an unprecedented opportunity for understanding the underlying reasons that arise glioma, determining the most effective radiotherapy approach, testing different drug combinations, and screening conceivable side effects of drugs on other organs. Glioma-on-chip technologies can ultimately enhance the efficacy of treatments, promote the survival rate of patients, and pave a path for personalized medicine. In this perspective paper, we briefly review the latest developments of glioma-on-chip technologies, such as therapy applications, drug screening, and cell behavior studies, and discuss the current challenges as well as future research directions in this field.Publication Open Access Heat transfer enhancement with actuation of magnetic nanoparticles suspended in a base fluid(American Institute of Physics (AIP) Publishing, 2012) Şeşen, Muhsincan; Tekşen, Yiğit; Mengüç, M. Pınar; Koşar, Ali; N/A; Department of Chemistry; Öztürk, Hande; Acar, Havva Funda Yağcı; Faculty Member; Department of Chemistry; Graduate School of Sciences and Engineering; College of Sciences; N/A; 178902In this study, we have experimentally demonstrated that heat transfer can be substantially increased by actuating magnetic nanoparticles inside a nanofluid. In order to materialize this, we have utilized a miniature heat transfer enhancement system based on the actuation of magnetic nanoparticles dispersed in a base fluid (water). This compact system consists of a pool filled with a nanofluid containing ferromagnetic nanoparticles, a heater, and two magnetic stirrers. The ferromagnetic particles within the pool were actuated with the magnetic stirrers. Single-phase heat transfer characteristics of the system were investigated at various fixed heat fluxes and were compared to those of stationary nanofluid (without magnetic stirring). The heat transfer enhancement realized by the circulation of ferromagnetic nanoparticles dispersed in a nanofluid was studied using the experimental setup. The temperatures were recorded from the readings of thin thermocouples, which were integrated to the heater surface. The surface temperatures were monitored against the input heat flux and data were processed to compare the heat transfer results of the configuration with magnetic stirrers to the heat transfer of the configuration without the magnetic stirrers. (C) 2012 American Institute of Physics