Publications with Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6

Browse

Search Results

Now showing 1 - 10 of 185
  • Thumbnail Image
    PublicationOpen Access
    On the capacity of diffusion-based molecular communications with SiNW FET-based receiver
    (Institute of Electrical and Electronics Engineers (IEEE), 2016) Department of Electrical and Electronics Engineering; Kuşcu, Murat; Akan, Özgür Barış; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering
    Molecular communication (MC) is a bio-inspired communication method based on the exchange of molecules for information transfer among nanoscale devices. Although MC has been extensively studied from various aspects, limitations imposed by the physical design of transceiving units have been largely neglected in the literature. Recently, we have proposed a nanobioelectronic MC receiver architecture based on the nanoscale field effect transistor-based biosensor (bioFET) technology, providing noninvasive and sensitive molecular detection at nanoscale while producing electrical signals at the output. In this paper, we derive analytical closed-form expressions for the capacity and capacity-achieving input distribution for a memoryless MC channel with a silicon nanowire (SiNW) FET-based MC receiver. The resulting expressions could be used to optimize the information flow in MC systems equipped with nanobioelectronic receivers.
  • Thumbnail Image
    PublicationOpen Access
    3D printed personalized magnetic micromachines from patient blood-derived biomaterials
    (American Association for the Advancement of Science (AAAS), 2021) Ceylan, Hakan; Doğan, Nihal Olcay; Yaşa, İmmihan Ceren; Department of Mechanical Engineering; Sitti, Metin; Musaoğlu, Miraç Nur; Kulalı, Zeynep Umut; Faculty Member; Department of Mechanical Engineering; College of Engineering; School of Medicine; 297104; N/A; N/A
    While recent wireless micromachines have shown increasing potential for medical use, their potential safety risks concerning biocompatibility need to be mitigated. They are typically constructed from materials that are not intrinsically compatible with physiological environments. Here, we propose a personalized approach by using patient blood-derivable biomaterials as the main construction fabric of wireless medical micromachines to alleviate safety risks from biocompatibility. We demonstrate 3D printed multiresponsive microswimmers and microrollers made from magnetic nanocomposites of blood plasma, serum albumin protein, and platelet lysate. These micro-machines respond to time-variant magnetic fields for torque-driven steerable motion and exhibit multiple cycles of pH-responsive two-way shape memory behavior for controlled cargo delivery and release applications. Their proteinaceous fabrics enable enzymatic degradability with proteinases, thereby lowering risks of long-term toxicity. The personalized micromachine fabrication strategy we conceptualize here can affect various future medical robots and devices made of autologous biomaterials to improve biocompatibility and smart functionality.
  • Thumbnail Image
    PublicationOpen Access
    Large-scale computational screening of MOF membranes and MOF-based polymer membranes for H2/N2 separations
    (American Chemical Society (ACS), 2019) Department of Chemical and Biological Engineering; Azar, Ayda Nemati Vesali; Velioğlu, Sadiye; Keskin, Seda; Department of Chemical and Biological Engineering; Graduate School of Sciences and Engineering; N/A; 200650; 40548
    Several thousands of metal organic frameworks (MOFs) have been reported to date, but the information on H-2/N-2 separation performances of MOF membranes is currently very limited in the literature. We report the first large-scale computational screening study that combines state-of-the-art molecular simulations, grand canonical Monte Carlo (GCMC) and molecular dynamics (MD), to predict H-2 permeability and H-2/N-2 selectivity of 3765 different types of MOF membranes. Results showed that MOF membranes offer very high H-2 permeabilities, 2.5 x 10(3) to 1.7 x 10(6) Barrer, and moderate H-2/N-2 membrane selectivities up to 7. The top 20 MOF membranes that exceed the polymeric membranes' upper bound for H-2/N-2 separation were identified based on the results of initial screening performed at infinite dilution condition. Molecular simulations were then carried out considering binary H-2/N-2 and quaternary H-2/N-2/CO2/CO mixtures to evaluate the separation performance of MOF membranes under industrial operating conditions. Lower H-2 permeabilities and higher N-2 permeabilities were obtained at binary mixture conditions compared to the ones obtained at infinite dilution due to the absence of multicomponent mixture effects in the latter. Structure performance relations of MOFs were also explored to provide molecular-level insights into the development of new MOF membranes that can offer both high H-2 permeability and high H-2/N-2 selectivity. Results showed that the most promising MOF membranes generally have large pore sizes (>6 A) as well as high surface areas (>3500 m(2)/g) and high pore volumes (>1 cm(3)/g). We finally examined H-2/N-2 separation potentials of the mixed matrix membranes (MMMs) in which the best MOF materials identified from our high-throughput screening were used as fillers in various polymers. Results showed that incorporation of MOFs into polymers almost doubles H-2 permeabilities and slightly enhances H-2/N-2 selectivities of polymer membranes, which can advance the current membrane technology for efficient H-2 purification.
  • Thumbnail Image
    PublicationOpen Access
    PathoNet introduced as a deep neural network backend for evaluation of Ki-67 and tumor-infiltrating lymphocytes in breast cancer
    (Nature Publishing Group (NPG), 2021) Sabzi, R.; Pakniyat Jahromi, B.; Firouzabadi, D.; Movahedi, F.; Kohandel Shirazi, M.; Majidi, S.; Dehghanian, A.; N/A; Faculty Member; Graduate School of Sciences and Engineering
    The nuclear protein Ki-67 and Tumor infiltrating lymphocytes (TILs) have been introduced as prognostic factors in predicting both tumor progression and probable response to chemotherapy. The value of Ki-67 index and TILs in approach to heterogeneous tumors such as Breast cancer (BC) that is the most common cancer in women worldwide, has been highlighted in literature. Considering that estimation of both factors are dependent on professional pathologists’ observation and inter-individual variations may also exist, automated methods using machine learning, specifically approaches based on deep learning, have attracted attention. Yet, deep learning methods need considerable annotated data. In the absence of publicly available benchmarks for BC Ki-67 cell detection and further annotated classification of cells, In this study we propose SHIDC-BC-Ki-67 as a dataset for the aforementioned purpose. We also introduce a novel pipeline and backend, for estimation of Ki-67 expression and simultaneous determination of intratumoral TILs score in breast cancer cells. Further, we show that despite the challenges that our proposed model has encountered, our proposed backend, PathoNet, outperforms the state of the art methods proposed to date with regard to harmonic mean measure acquired. Dataset is publicly available in https://shiraz-hidc.com and all experiment codes are published in https://github.com/SHIDCenter/PathoNet.
  • Thumbnail Image
    PublicationOpen Access
    Shifting evaluation windows: predictable forward primes with long SOAs eliminate the impact of backward primes
    (Public Library of Science, 2013) Fockenberg, Daniel A.; Koole, Sander L.; Lakens, Daniël; Department of Psychology; Semin, Gün Refik; Researcher; Department of Psychology; College of Social Sciences and Humanities; 58066
    Recent work suggests that people evaluate target stimuli within short and flexible time periods called evaluation windows. Stimuli that briefly precede a target (forward primes) or briefly succeed a target (backward primes) are often included in the target's evaluation. In this article, the authors propose that predictable forward primes act as ""go"" signals that prepare target processing, such that earlier forward primes pull the evaluation windows forward in time. Earlier forward primes may thus reduce the impact of backward primes. This shifting evaluation windows hypothesis was tested in two experiments using an evaluative decision task with predictable (vs. unpredictable) forward and backward primes. As expected, a longer time interval between a predictable forward prime and a target eliminated backward priming. In contrast, the time interval between an unpredictable forward primes and a target had no effects on backward priming. These findings suggest that predictable features of dynamic stimuli can shape target extraction by determining which information is included (or excluded) in rapid evaluation processes.
  • Thumbnail Image
    PublicationOpen Access
    Fabrication and microfluidic analysis of graphene-based molecular communication receiver for Internet of Nano Things (IoNT)
    (Springer Nature, 2021) Ramezani, Hamideh; Dinç, Ergin; Akhavan, Shahab; Department of Electrical and Electronics Engineering; Akan, Özgür Barış; Kuşcu, Murat; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 6647; 316349
    Bio-inspired molecular communications (MC), where molecules are used to transfer information, is the most promising technique to realise the Internet of Nano Things (IoNT), thanks to its inherent biocompatibility, energy-efficiency, and reliability in physiologically-relevant environments. Despite a substantial body of theoretical work concerning MC, the lack of practical micro/nanoscale MC devices and MC testbeds has led researchers to make overly simplifying assumptions about the implications of the channel conditions and the physical architectures of the practical transceivers in developing theoretical models and devising communication methods for MC. On the other hand, MC imposes unique challenges resulting from the highly complex, nonlinear, time-varying channel properties that cannot be always tackled by conventional information and communication tools and technologies (ICT). As a result, the reliability of the existing MC methods, which are mostly adopted from electromagnetic communications and not validated with practical testbeds, is highly questionable. As the first step to remove this discrepancy, in this study, we report on the fabrication of a nanoscale MC receiver based on graphene field-effect transistor biosensors. We perform its ICT characterisation in a custom-designed microfluidic MC system with the information encoded into the concentration of single-stranded DNA molecules. This experimental platform is the first practical implementation of a micro/nanoscale MC system with nanoscale MC receivers, and can serve as a testbed for developing realistic MC methods and IoNT applications.
  • Thumbnail Image
    PublicationOpen Access
    Dynamic transcriptional response of Saccharomyces cerevisiae cells to copper
    (Nature Publishing Group (NPG), 2020) Öç, Şebnem; Kırdar, Betül; Eraslan, Serpil; Other; Koç University Hospital
    Copper is a crucial trace element for all living systems and any deficiency in copper homeostasis leads to the development of severe diseases in humans. The observation of extensive evolutionary conservation in copper homeostatic systems between human and Saccharomyces cerevisiae made this organism a suitable model organism for elucidating molecular mechanisms of copper transport and homeostasis. In this study, the dynamic transcriptional response of both the reference strain and homozygous deletion mutant strain of CCC2, which encodes a Cu2+-transporting P-type ATPase, were investigated following the introduction of copper impulse to reach a copper concentration which was shown to improve the respiration capacity of CCC2 deletion mutants. The analysis of data by using different clustering algorithms revealed significantly affected processes and pathways in response to a switch from copper deficient environment to elevated copper levels. Sulfur compound, methionine and cysteine biosynthetic processes were identified as significantly affected processes for the first time in this study. Stress response, cellular response to DNA damage, iron ion homeostasis, ubiquitin dependent proteolysis, autophagy and regulation of macroautophagy, DNA repair and replication, as well as organization of mitochondrial respiratory chain complex IV, mitochondrial organization and translation were identified as significantly affected processes in only CCC2 deleted strain. The integration of the transcriptomic data with regulome revealed the differences in the extensive re-wiring of dynamic transcriptional organization and regulation in these strains.
  • Thumbnail Image
    PublicationOpen Access
    A bacteria-derived tail anchor localizes to peroxisomes in yeast and mammalian cells
    (Nature Publishing Group (NPG), 2018) Seferoğlu, Ayşe Bengisu; Department of Molecular Biology and Genetics; Dunn, Cory David; Keskin, Abdurrahman; Akdoğan, Emel; Lutfullahoglu-Bal, Guleycan; Department of Molecular Biology and Genetics; College of Sciences
    Prokaryotes can provide new genetic information to eukaryotes by horizontal gene transfer (HGT), and such transfers are likely to have been particularly consequential in the era of eukaryogenesis. Since eukaryotes are highly compartmentalized, it is worthwhile to consider the mechanisms by which newly transferred proteins might reach diverse organellar destinations. Toward this goal, we have focused our attention upon the behavior of bacteria-derived tail anchors (TAs) expressed in the eukaryote Saccharomyces cerevisiae. In this study, we report that a predicted membrane-associated domain of the Escherichia coli YgiM protein is specifically trafficked to peroxisomes in budding yeast, can be found at a pre-peroxisomal compartment (PPC) upon disruption of peroxisomal biogenesis, and can functionally replace an endogenous, peroxisome-directed TA. Furthermore, the YgiM(TA) can localize to peroxisomes in mammalian cells. Since the YgiM(TA) plays no endogenous role in peroxisomal function or assembly, this domain is likely to serve as an excellent tool allowing further illumination of the mechanisms by which TAs can travel to peroxisomes. Moreover, our findings emphasize the ease with which bacteria-derived sequences might target to organelles in eukaryotic cells following HGT, and we discuss the importance of flexible recognition of organelle targeting information during and after eukaryogenesis.
  • Thumbnail Image
    PublicationOpen Access
    Epithelial Wnt secretion drives the progression of inflammation-induced colon carcinoma in murine model
    (Cell Press, 2021) Değirmenci, Bahar; Dinçer, Cansu; Demirel, Habibe Cansu; Berkova, Linda; Moor, Andreas E.; Kahraman, Abdullah; Hausmann, George; Aguet, Michel; Valenta, Tomas; Basler, Konrad; Department of Chemical and Biological Engineering; Tunçbağ, Nurcan; Faculty Member; Department of Chemical and Biological Engineering; College of Engineering; 245513
    Colon cancer is initiated by stem cells that escape the strict control. This process is often driven through aberrant activation of Wnt signaling by mutations in components acting downstream of the receptor complex that unfetter tumor cells from the need for Wnts. Here we describe a class of colon cancer that does not depend on mutated core components of the Wnt pathway. Genetically blocking Wnt secretion from epithelial cells of such tumors results in apoptosis, reduced expression of colon cancer markers, followed by enhanced tumor differentiation. In contrast to the normal colonic epithelium, such tumor cells autosecrete Wnts to maintain their uncontrolled proliferative behavior. In humans, we determined certain cases of colon cancers in which the Wnt pathway is hyperactive, but not through mutations in its core components. Our findings illuminate the path in therapy to find further subtypes of Wnt-dependent colon cancer that might be to Wnt secretion inhibitors.
  • Thumbnail Image
    PublicationOpen Access
    On the physical design of molecular communication receiver based on nanoscale biosensors
    (Institute of Electrical and Electronics Engineers (IEEE), 2016) Department of Electrical and Electronics Engineering; Kuşcu, Murat; Akan, Özgür Barış; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering
    Molecular communications, where molecules are used to encode, transmit, and receive information, are a promising means of enabling the coordination of nanoscale devices. The paradigm has been extensively studied from various aspects, including channel modeling and noise analysis. Comparatively little attention has been given to the physical design of molecular receiver and transmitter, envisioning biological synthetic cells with intrinsic molecular reception and transmission capabilities as the future nanomachines. However, this assumption leads to a discrepancy between the envisaged applications requiring complex communication interfaces and protocols, and the very limited computational capacities of the envisioned biological nanomachines. In this paper, we examine the feasibility of designing a molecular receiver, in a physical domain other than synthetic biology, meeting the basic requirements of nanonetwork applications. We first review the state-of-the-art biosensing approaches to determine whether they can inspire a receiver design. We reveal that the nanoscale field effect transistor-based electrical biosensor technology (bioFET) is particularly a useful starting point for designing a molecular receiver. Focusing on bioFET-based molecular receivers with a conceptual approach, we provide a guideline elaborating on their operation principles, performance metrics, and design parameters. We then provide a simple model for signal flow in silicon nanowire FET-based molecular receiver. Finally, we discuss the practical challenges of implementing the receiver and present the future research avenues from a communication theoretical perspective.