Publications with Fulltext
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6
Browse
1 results
Search Results
Publication Open Access Genetic algorithm-driven surface-enhanced Raman spectroscopy substrate optimization(Multidisciplinary Digital Publishing Institute (MDPI), 2021) Yanık, Cenk; Department of Electrical and Electronics Engineering; N/A; Onbaşlı, Mehmet Cengiz; Bilgin, Buse; Torun, Hülya; Faculty Member; Department of Electrical and Electronics Engineering; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); College of Engineering; Graduate School of Sciences and Engineering; 258783; N/A; N/ASurface-enhanced Raman spectroscopy (SERS) is a highly sensitive and molecule-specific detection technique that uses surface plasmon resonances to enhance Raman scattering from analytes. In SERS system design, the substrates must have minimal or no background at the incident laser wavelength and large Raman signal enhancement via plasmonic confinement and grating modes over large areas (i.e., squared millimeters). These requirements impose many competing design constraints that make exhaustive parametric computational optimization of SERS substrates pro-hibitively time consuming. Here, we demonstrate a genetic-algorithm (GA)-based optimization method for SERS substrates to achieve strong electric field localization over wide areas for recon-figurable and programmable photonic SERS sensors. We analyzed the GA parameters and tuned them for SERS substrate optimization in detail. We experimentally validated the model results by fabricating the predicted nanostructures using electron beam lithography. The experimental Raman spectrum signal enhancements of the optimized SERS substrates validated the model predictions and enabled the generation of a detailed Raman profile of methylene blue fluorescence dye. The GA and its optimization shown here could pave the way for photonic chips and components with arbitrary design constraints, wavelength bands, and performance targets.