Publications with Fulltext
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6
Browse
2 results
Search Results
Publication Open Access Can GLP-1 be a target for reward system related disorders? a qualitative synthesis and systematic review analysis of studies on palatable food, drugs of abuse, and alcohol(Frontiers, 2021) Doğruöz, Ramazan Efe; Eser, Hale Yapıcı; Eren, Candan Yasemin; Yigit, Arya; Faculty Member; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); School of Medicine; 134359; N/A; N/AThe role of glucagon-like peptide 1 (GLP-1) in insulin-dependent signaling is well-known; GLP-1 enhances glucose-dependent insulin secretion and lowers blood glucose in diabetes. GLP-1 receptors (GLP-1R) are also widely expressed in the brain, and in addition to its role in neuroprotection, it affects reward pathways. This systematic review aimed to analyze the studies on GLP-1 and reward pathways and its currently identified mechanisms. Methods: "Web of Science" and "Pubmed" were searched to identify relevant studies using GLP-1 as the keyword. Among the identified 26,539 studies, 30 clinical, and 71 preclinical studies were included. Data is presented by grouping rodent studies on palatable food intake, drugs of abuse, and studies on humans focusing on GLP-1 and reward systems. Results: GLP-1Rs are located in reward-related areas, and GLP-1, its agonists, and DPP-IV inhibitors are effective in decreasing palatable food intake, along with reducing cocaine, amphetamine, alcohol, and nicotine use in animals. GLP-1 modulates dopamine levels and glutamatergic neurotransmission, which results in observed behavioral changes. In humans, GLP-1 alters palatable food intake and improves activity deficits in the insula, hypothalamus, and orbitofrontal cortex (OFC). GLP-1 reduces food cravings partially by decreasing activity to the anticipation of food in the left insula of obese patients with diabetes and may inhibit overeating by increasing activity to the consumption of food in the right OFC of obese and left insula of obese with diabetes. Conclusion: current preclinical studies support the view that GLP-1 can be a target for reward system related disorders. More translational research is needed to evaluate its efficacy on human reward system related disorders.Publication Open Access The NMDA receptor antagonist MK-801 fails to impair long-term recognition memory in mice when the state-dependency of memory is controlled(Elsevier, 2019) Austen, Joseph M.; Eacott, Madeline J.; Easton, Alexander; Sanderson, David J.; Department of Psychology; Department of Psychology; Graduate School of Social Sciences and HumanitiesNMDA receptor-dependent synaptic plasticity has been proposed to be important for encoding of memories. Consistent with this hypothesis, the non-competitive NMDA receptor antagonist, MK-801, has been found to impair performance on tests of memory. Interpretation of some of these findings has, however, been complicated by the fact that the drug-state of animals has differed during encoding and tests of memory. Therefore, it is possible that MK-801 may result in state-dependent retrieval or expression of memory rather than actually impairing encoding itself. We tested this hypothesis in mice using tests of object recognition memory with a 24 hour delay between the encoding and test phase. Mice received injections of either vehicle or MK-801 prior to the encoding phase and the test phase. In Experiment 1, a low dose of MK-801 (0.01 mg/kg) impaired performance when the drug-state (vehicle or MK-801) of mice changed between encoding and test, but there was no significant effect of MK-801 on encoding. In Experiment 2, a higher dose of MK-801 (0.1 mg/kg) failed to impair object recognition memory when mice received the drug prior to both encoding and test compared to mice that received vehicle. MK-801 did not affect object exploration, but it did induce locomotor hyperactivity at the higher dose. These results suggest that some previous demonstrations of MK-801 effects may reflect a failure to express or retrieve memory due to the state-dependency of memory rather than impaired encoding of memory.