Publications with Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6

Browse

Search Results

Now showing 1 - 7 of 7
  • Thumbnail Image
    PublicationOpen Access
    Database for CO2 separation performances of MOFs based on computational materials screening
    (American Chemical Society (ACS), 2018) Eruçar, İlknur; Department of Chemical and Biological Engineering; Altıntaş, Çiğdem; Avcı, Gökay; Harman, Hilal Dağlar; Azar, Ayda Nemati Vesali; Velioğlu, Sadiye; Keskin, Seda; Researcher; Post Doctorate Student; Department of Chemical and Biological Engineering; College of Engineering; N/A; N/A; N/A; N/A; N/A; 40548
    Metal-organic frameworks (MOFs) are potential adsorbents for CO2 capture. Because thousands of MOFs exist, computational studies become very useful in identifying the top performing materials for target applications in a time-effective manner. In this study, molecular simulations were performed to screen the MOF database to identify the best materials for CO2 separation from flue gas (CO2/N-2) and landfill gas (CO2/CH4) under realistic operating conditions. We validated the accuracy of our computational approach by comparing the simulation results for the CO2 uptakes, CO2/N-2 and CO2/CH4 selectivities of various types of MOFs with the available experimental data. Binary CO2/N-2 and CO2/CH4 mixture adsorption data were then calculated for the entire MOF database. These data were then used to predict selectivity, working capacity, regenerability, and separation potential of MOFs. The top performing MOF adsorbents that can separate CO2/N-2 and CO2/CH4 with high performance were identified. Molecular simulations for the adsorption of a ternary CO2/N-2/CH4 mixture were performed for these top materials to provide a more realistic performance assessment of MOF adsorbents. The structure-performance analysis showed that MOFs with Delta Q(st)(0) > 30 kJ/mol, 3.8 angstrom < pore-limiting diameter < 5 angstrom, 5 angstrom < largest cavity diameter < 7.5 angstrom, 0.5 < phi < 0.75, surface area < 1000 m(2)/g, and rho > 1 g/cm(3) are the best candidates for selective separation of CO2 from flue gas and landfill gas. This information will be very useful to design novel MOFs exhibiting high CO2 separation potentials. Finally, an online, freely accessible database https://cosmoserc.ku.edu.tr was established, for the first time in the literature, which reports all of the computed adsorbent metrics of 3816 MOFs for CO2/N-2, CO2/CH4, and CO2/N-2/CH4 separations in addition to various structural properties of MOFs.
  • Thumbnail Image
    PublicationOpen Access
    In situ formation of copper phosphate on hydroxyapatite for wastewater treatment
    (Multidisciplinary Digital Publishing Institute (MDPI), 2022) Rahmani, Fatemeh; Ghadi, Arezoo; Khaksar, Samad; Doustkhah, Esmail; PhD Student; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM)
    Here, we control the surface activity of hydroxyapatite (HAp) in wastewater treatment which undergoes peroxodisulfate (PDS) activation. Loading the catalytically active Cu species on HAp forms a copper phosphate in the outer layer of HAp. This modification turns a low active HAp into a high catalytically active catalyst in the dye degradation process. The optimal operational conditions were established to be [Cu-THAp](0) = 1 g/L, [RhB](0) = 20 mg/L, [PDS](0) = 7.5 mmol/L, and pH = 3. The experiments indicate that the simultaneous presence of Cu-THAp and PDS synergistically affect the degradation process. Additionally, chemical and structural characterizations proved the stability and effectiveness of Cu-THAp. Therefore, this work introduces a simple approach to water purification through green and sustainable HAp-based materials.
  • Thumbnail Image
    PublicationOpen Access
    Plasmon-coupled photocapacitor neuromodulators
    (American Chemical Society (ACS), 2020) Ülgüt, Burak; Çetin, Arif E.; N/A; N/A; Department of Molecular Biology and Genetics; Department of Electrical and Electronics Engineering; Department of Chemical and Biological Engineering; Melikov, Rustamzhon; Srivastava, Shashi Bhushan; Karatüm, Onuralp; Doğru-Yüksel, Itır Bakış; Jalali, Houman Bahmani; Sadeghi, Sadra; Dikbaş, Uğur Meriç; Kavaklı, İbrahim Halil; Nizamoğlu, Sedat; PhD Student; Researcher; PhD Student; PhD Student; Master Student; Faculty Member; Faculty Member; Department of Molecular Biology and Genetics; Department of Electrical and Electronics Engineering; Department of Chemical and Biological Engineering; Graduate School of Sciences and Engineering; College of Sciences; College of Engineering; N/A; N/A; N/A; N/A; N/A; N/A; N/A; 40319; 130295
    Efficient transduction of optical energy to bioelectrical stimuli is an important goal for effective communication with biological systems. For that, plasmonics has a significant potential via boosting the light-matter interactions. However, plasmonics has been primarily used for heat-induced cell stimulation due to membrane capacitance change (i.e., optocapacitance). Instead, here, we demonstrate that plasmonic coupling to photocapacitor biointerfaces improves safe and efficacious neuromodulating displacement charges for an average of 185% in the entire visible spectrum while maintaining the faradic currents below 1%. Hot-electron injection dominantly leads the enhancement of displacement current in the blue spectral window, and the nanoantenna effect is mainly responsible for the improvement in the red spectral region. The plasmonic photocapacitor facilitates wireless modulation of single cells at three orders of magnitude below the maximum retinal intensity levels, corresponding to one of the most sensitive optoelectronic neural interfaces. This study introduces a new way of using plasmonics for safe and effective photostimulation of neurons and paves the way toward ultrasensitive plasmon-assisted neurostimulation devices.
  • Thumbnail Image
    PublicationOpen Access
    High-yield production of biohybrid microalgae for on-demand cargo delivery
    (Wiley, 2020) Akolpoğlu, Mukrime Birgul; Bozüyük, Uğur; Ceylan, Hakan; Department of Chemical and Biological Engineering; Department of Mechanical Engineering; Kızılel, Seda; Doğan, Nihal Olcay; Sitti, Metin; Faculty Member; Faculty Member; Department of Chemical and Biological Engineering; Department of Mechanical Engineering; College of Engineering; Graduate School of Sciences and Engineering; School of Medicine; 28376; N/A; 297104
    Biohybrid microswimmers exploit the swimming and navigation of a motile microorganism to target and deliver cargo molecules in a wide range of biomedical applications. Medical biohybrid microswimmers suffer from low manufacturing yields, which would significantly limit their potential applications. In the present study, a biohybrid design strategy is reported, where a thin and soft uniform coating layer is noncovalently assembled around a motile microorganism.Chlamydomonas reinhardtii(a single-cell green alga) is used in the design as a biological model microorganism along with polymer-nanoparticle matrix as the synthetic component, reaching a manufacturing efficiency of approximate to 90%. Natural biopolymer chitosan is used as a binder to efficiently coat the cell wall of the microalgae with nanoparticles. The soft surface coating does not impair the viability and phototactic ability of the microalgae, and allows further engineering to accommodate biomedical cargo molecules. Furthermore, by conjugating the nanoparticles embedded in the thin coating with chemotherapeutic doxorubicin by a photocleavable linker, on-demand delivery of drugs to tumor cells is reported as a proof-of-concept biomedical demonstration. The high-throughput strategy can pave the way for the next-generation generation microrobotic swarms for future medical active cargo delivery tasks.
  • Thumbnail Image
    PublicationOpen Access
    High-throughput computational screening of the metal organic framework database for CH4/H-2 separations
    (American Chemical Society (ACS), 2018) Eruçar, İlknur; Department of Chemical and Biological Engineering; Altıntaş, Çiğdem; Keskin, Seda; Researcher; Department of Chemical and Biological Engineering; College of Engineering; N/A; 40548
    Metal organic frameworks (MOFs) have been considered as one of the most exciting porous materials discovered in the last decade. Large surface areas, high pore volumes, and tailorable pore sizes make MOFs highly promising in a variety of applications, mainly in gas separations. The number of MOFs has been increasing very rapidly, and experimental identification of materials exhibiting high gas separation potential is simply impractical. High throughput computational screening studies in which thousands of MOFs are evaluated to identify the best candidates for target gas separation is crucial in directing experimental efforts to the most useful materials. In this work, we used molecular simulations to screen the most complete and recent collection of MOFs from the Cambridge Structural Database to unlock their CH4/H-2 separation performances. This is the first study in the literature, which examines the potential of all existing MOFs for adsorption-based CH4/H-2 separation. MOFs (4350) were ranked based on several adsorbent evaluation metrics including selectivity, working capacity, adsorbent performance score, sorbent selection parameter, and regenerability. A large number of MOFs were identified to have extraordinarily large CH4/H-2 selectivities compared to traditional adsorbents such as zeolites and activated carbons. We examined the relations between structural properties of MOFs such as pore sizes, porosities, and surface areas and their selectivities. Correlations between the heat of adsorption, adsorbility, metal type of MOFs, and selectivities were also studied. On the basis of these relations, a simple mathematical model that can predict the CH4/H-2 selectivity of MOFs was suggested, which will be very useful in guiding the design and development of new MOFs with extraordinarily high CH4/H-2 separation performances.
  • Thumbnail Image
    PublicationOpen Access
    Quantum dot to nanorod transition for efficient white-light-emitting diodes with suppressed absorption losses
    (American Chemical Society (ACS), 2022) Melikov, Rustamzhon; N/A; Department of Electrical and Electronics Engineering; N/A; Önal, Asım; Sadeghi, Sadra; Karatüm, Onuralp; Nizamoğlu, Sedat; Eren, Güncem Özgün; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; Graduate School of Sciences and Engineering; N/A; N/A; N/A; 130295; N/A
    Colloidal nanocrystals have great potential for next-generation solid-state lighting due to their outstanding emission and absorption tunability via size and morphology, narrow emission linewidth, and high photoluminescence quantum yield (PLQY). However, the losses due to self-and interabsorption among multitudes of nanocrystals significantly decrease external quantum yield levels of light-emitting diodes (LEDs). Here, we demonstrate efficient white LEDs via CdSe/CdS dot to ""dot-in-rod"" transition that enabled a large Stokes shift of 780 meV and significantly reduced absorption losses when used in conjunction with near-unity PLQY ZnCdSe/ZnSe quantum dots (QDs) emitting at the green spectral range. The optimized incorporation of nanocrystals in a liquid state led to the white LEDs with an ultimate external quantum efficiency (EQE) of 42.9%, with a net increase of EQE of 10.3% in comparison with white LEDs using CdSe/CdS dots. Therefore, combinations of nanocrystals with different nanomorphologies hold high promise for efficient white LEDs.
  • Thumbnail Image
    PublicationOpen Access
    Protein scaffold-based multimerization of soluble ACE2 efficiently blocks SARS-CoV-2 infection in vitro and in vivo
    (Wiley, 2022) Ulbegi Polat, Hivda; Yıldırım, İsmail Selim; Kayabölen, Alişan; Akcan, Uğur; Özturan, Doğancan; Şahin, Gizem Nur; Değirmenci, Nareg Pınarbaşı; Bayraktar, Canan; Söyler, Gizem; Sarayloo, Ehsan; Nurtop, Elif; Özer, Berna; Esken, Gülen Güney; Barlas, Tayfun; Doğan, Özlem; Karahüseyinoğlu, Serçin; Lack, Nathan Alan; Kaya, Mehmet; Albayrak, Cem; Can, Füsun; Solaroğlu, İhsan; Önder, Tuğba Bağcı; PhD Student; PhD Student; Master Student; Faculty Member; Faculty Member; Faculty Member; Faculty Member; Faculty Member; Faculty Member; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Graduate School of Health Sciences; School of Medicine; Koç University Hospital; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; 170418; 110772; 120842; 10486; N/A; 103165; 102059; 184359
    Soluble ACE2 (sACE2) decoys are promising agents to inhibit SARS-CoV-2, as their efficiency is unlikely to be affected by escape mutations. However, their success is limited by their relatively poor potency. To address this challenge, multimeric sACE2 consisting of SunTag or MoonTag systems is developed. These systems are extremely effective in neutralizing SARS-CoV-2 in pseudoviral systems and in clinical isolates, perform better than the dimeric or trimeric sACE2, and exhibit greater than 100-fold neutralization efficiency, compared to monomeric sACE2. SunTag or MoonTag fused to a more potent sACE2 (v1) achieves a sub-nanomolar IC50, comparable with clinical monoclonal antibodies. Pseudoviruses bearing mutations for variants of concern, including delta and omicron, are also neutralized efficiently with multimeric sACE2. Finally, therapeutic treatment of sACE2(v1)-MoonTag provides protection against SARS-CoV-2 infection in an in vivo mouse model. Therefore, highly potent multimeric sACE2 may offer a promising treatment approach against SARS-CoV-2 infections.