Publications with Fulltext
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6
Browse
31 results
Search Results
Publication Open Access Database for CO2 separation performances of MOFs based on computational materials screening(American Chemical Society (ACS), 2018) Eruçar, İlknur; Department of Chemical and Biological Engineering; Altıntaş, Çiğdem; Avcı, Gökay; Harman, Hilal Dağlar; Azar, Ayda Nemati Vesali; Velioğlu, Sadiye; Keskin, Seda; Researcher; Post Doctorate Student; Department of Chemical and Biological Engineering; College of Engineering; N/A; N/A; N/A; N/A; N/A; 40548Metal-organic frameworks (MOFs) are potential adsorbents for CO2 capture. Because thousands of MOFs exist, computational studies become very useful in identifying the top performing materials for target applications in a time-effective manner. In this study, molecular simulations were performed to screen the MOF database to identify the best materials for CO2 separation from flue gas (CO2/N-2) and landfill gas (CO2/CH4) under realistic operating conditions. We validated the accuracy of our computational approach by comparing the simulation results for the CO2 uptakes, CO2/N-2 and CO2/CH4 selectivities of various types of MOFs with the available experimental data. Binary CO2/N-2 and CO2/CH4 mixture adsorption data were then calculated for the entire MOF database. These data were then used to predict selectivity, working capacity, regenerability, and separation potential of MOFs. The top performing MOF adsorbents that can separate CO2/N-2 and CO2/CH4 with high performance were identified. Molecular simulations for the adsorption of a ternary CO2/N-2/CH4 mixture were performed for these top materials to provide a more realistic performance assessment of MOF adsorbents. The structure-performance analysis showed that MOFs with Delta Q(st)(0) > 30 kJ/mol, 3.8 angstrom < pore-limiting diameter < 5 angstrom, 5 angstrom < largest cavity diameter < 7.5 angstrom, 0.5 < phi < 0.75, surface area < 1000 m(2)/g, and rho > 1 g/cm(3) are the best candidates for selective separation of CO2 from flue gas and landfill gas. This information will be very useful to design novel MOFs exhibiting high CO2 separation potentials. Finally, an online, freely accessible database https://cosmoserc.ku.edu.tr was established, for the first time in the literature, which reports all of the computed adsorbent metrics of 3816 MOFs for CO2/N-2, CO2/CH4, and CO2/N-2/CH4 separations in addition to various structural properties of MOFs.Publication Open Access In situ formation of copper phosphate on hydroxyapatite for wastewater treatment(Multidisciplinary Digital Publishing Institute (MDPI), 2022) Rahmani, Fatemeh; Ghadi, Arezoo; Khaksar, Samad; Doustkhah, Esmail; PhD Student; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM)Here, we control the surface activity of hydroxyapatite (HAp) in wastewater treatment which undergoes peroxodisulfate (PDS) activation. Loading the catalytically active Cu species on HAp forms a copper phosphate in the outer layer of HAp. This modification turns a low active HAp into a high catalytically active catalyst in the dye degradation process. The optimal operational conditions were established to be [Cu-THAp](0) = 1 g/L, [RhB](0) = 20 mg/L, [PDS](0) = 7.5 mmol/L, and pH = 3. The experiments indicate that the simultaneous presence of Cu-THAp and PDS synergistically affect the degradation process. Additionally, chemical and structural characterizations proved the stability and effectiveness of Cu-THAp. Therefore, this work introduces a simple approach to water purification through green and sustainable HAp-based materials.Publication Open Access Plasmon-coupled photocapacitor neuromodulators(American Chemical Society (ACS), 2020) Ülgüt, Burak; Çetin, Arif E.; N/A; N/A; Department of Molecular Biology and Genetics; Department of Electrical and Electronics Engineering; Department of Chemical and Biological Engineering; Melikov, Rustamzhon; Srivastava, Shashi Bhushan; Karatüm, Onuralp; Doğru-Yüksel, Itır Bakış; Jalali, Houman Bahmani; Sadeghi, Sadra; Dikbaş, Uğur Meriç; Kavaklı, İbrahim Halil; Nizamoğlu, Sedat; PhD Student; Researcher; PhD Student; PhD Student; Master Student; Faculty Member; Faculty Member; Department of Molecular Biology and Genetics; Department of Electrical and Electronics Engineering; Department of Chemical and Biological Engineering; Graduate School of Sciences and Engineering; College of Sciences; College of Engineering; N/A; N/A; N/A; N/A; N/A; N/A; N/A; 40319; 130295Efficient transduction of optical energy to bioelectrical stimuli is an important goal for effective communication with biological systems. For that, plasmonics has a significant potential via boosting the light-matter interactions. However, plasmonics has been primarily used for heat-induced cell stimulation due to membrane capacitance change (i.e., optocapacitance). Instead, here, we demonstrate that plasmonic coupling to photocapacitor biointerfaces improves safe and efficacious neuromodulating displacement charges for an average of 185% in the entire visible spectrum while maintaining the faradic currents below 1%. Hot-electron injection dominantly leads the enhancement of displacement current in the blue spectral window, and the nanoantenna effect is mainly responsible for the improvement in the red spectral region. The plasmonic photocapacitor facilitates wireless modulation of single cells at three orders of magnitude below the maximum retinal intensity levels, corresponding to one of the most sensitive optoelectronic neural interfaces. This study introduces a new way of using plasmonics for safe and effective photostimulation of neurons and paves the way toward ultrasensitive plasmon-assisted neurostimulation devices.Publication Open Access Nonlinear nanomechanical mass spectrometry at the single-nanoparticle level(American Chemical Society (ACS), 2019) Yüksel, Mert; Orhan, Ezgi; Yanık, Cenk; Arı, Atakan B.; Hanay, M. Selim; Department of Electrical and Electronics Engineering; Demir, Alper; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 3756Nanoelectromechanical systems (NEMS) have emerged as a promising technology for performing the mass spectrometry of large biomolecules and nanoparticles. As nanoscale objects land on NEMS sensors one by one, they induce resolvable shifts in the resonance frequency of the sensor proportional to their weight. The operational regime of NEMS sensors is often limited by the onset of nonlinearity, beyond which the highly sensitive schemes based on frequency tracking by phase-locked loops cannot be readily used. Here, we develop a measurement architecture with which to operate at the nonlinear regime and measure frequency shifts induced by analytes in a rapid and sensitive manner. We used this architecture to individually characterize the mass of gold nanoparticles and verified the results by performing independent measurements of the same nanoparticles based on linear mass sensing. Once the feasibility of the technique is established, we have obtained the mass spectrum of a 20 nm gold nanoparticle sample by individually recording about 500 single-particle events using two modes working sequentially in the nonlinear regime. The technique obtained here can be used for thin nanomechanical structures that possess a limited dynamic range.Publication Open Access High-performance magnetic FePt (L1(0)) surface microrollers towards medical imaging-guided endovascular delivery applications(Wiley, 2021) Bozüyük, U.; Suadiye, E.; Aghakhani, A.; Doğan, N.O.; Lazovic, J.; Tiryaki, M.E.; Schneider, M.; Karacakol, A.C.; Demir, S.O., Richter, G.; Department of Mechanical Engineering; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; College of Engineering; School of Medicine; 297104Controlled microrobotic navigation in the vascular system can revolutionize minimally invasive medical applications, such as targeted drug and gene delivery. Magnetically controlled surface microrollers have emerged as a promising microrobotic platform for controlled navigation in the circulatory system. Locomotion of micrororollers in strong flow velocities is a highly challenging task, which requires magnetic materials having strong magnetic actuation properties while being biocompatible. The L10-FePt magnetic coating can achieve such requirements. Therefore, such coating has been integrated into 8 µm-diameter surface microrollers and investigated the medical potential of the system from magnetic locomotion performance, biocompatibility, and medical imaging perspectives. The FePt coating significantly advanced the magnetic performance and biocompatibility of the microrollers compared to a previously used magnetic material, nickel. The FePt coating also allowed multimodal imaging of microrollers in magnetic resonance and photoacoustic imaging in ex vivo settings without additional contrast agents. Finally, FePt-coated microrollers showed upstream locomotion ability against 4.5 cm s?1 average flow velocity with real-time photoacoustic imaging, demonstrating the navigation control potential of microrollers in the circulatory system for future in vivo applications. Overall, L10-FePt is conceived as the key material for image-guided propulsion in the vascular system to perform future targeted medical interventions.Publication Open Access Minimum energy channel codes for nanoscale wireless communications(Institute of Electrical and Electronics Engineers (IEEE), 2013) Department of Electrical and Electronics Engineering; Kocaoğlu, Murat; Akan, Özgür Barış; PhD Student; Department of Electrical and Electronics Engineering; College of EngineeringIt is essential to develop energy-efficient communication techniques for nanoscale wireless communications. In this paper, a new modulation and a novel minimum energy coding scheme (MEC) are proposed to achieve energy efficiency in wireless nanosensor networks (WNSNs). Unlike existing studies, MEC maintains the desired code distance to provide reliability, while minimizing energy. It is analytically shown that, with MEC, codewords can be decoded perfectly for large code distances, if the source set cardinality is less than the inverse of the symbol error probability. Performance evaluations show that MEC outperforms popular codes such as Hamming, Reed-Solomon and Golay in the average codeword energy sense.Publication Open Access Characterizing the cellular response to nitrogen-doped carbon nanocups(Multidisciplinary Digital Publishing Institute (MDPI), 2019) Griffith, Amber S.; Zhang, Thomas D.; Burkert, Seth C.; Adıgüzel, Zelal; Star, Alexander; Saunders, William S.; Department of Molecular Biology and Genetics; Ayhan, Ceyda Açılan; Faculty Member; Department of Molecular Biology and Genetics; School of MedicineCarbon nanomaterials, specifically, carbon nanotubes (CNTs) have many potential applications in biology and medicine. Currently, this material has not reached its full potential for application due to the potential toxicity to mammalian cells, and the incomplete understanding of how CNTs interface with cells. The chemical composition and structural features of CNTs have been shown to directly affect their biological compatibility. The incorporation of nitrogen dopants to the graphitic lattice of CNTs results in a unique cup shaped morphology and minimal cytotoxicity in comparison to its undoped counterpart. In this study, we investigate how uniquely shaped nitrogen-doped carbon nanocups (NCNCs) interface with HeLa cells, a cervical cancer epithelial cultured cell line, and RPE-1 cells, an immortalized cultured epithelial cell line. We determined that NCNCs do not elicit a cytotoxic response in cells, and that they are uptaken via endocytosis. We have conjugated fluorescently tagged antibodies to NCNCs and shown that the protein-conjugated material is also capable of entering cells. This primes NCNCs to be a good candidate for subsequent protein modifications and applications in biological systems.Publication Open Access High-yield production of biohybrid microalgae for on-demand cargo delivery(Wiley, 2020) Akolpoğlu, Mukrime Birgul; Bozüyük, Uğur; Ceylan, Hakan; Department of Chemical and Biological Engineering; Department of Mechanical Engineering; Kızılel, Seda; Doğan, Nihal Olcay; Sitti, Metin; Faculty Member; Faculty Member; Department of Chemical and Biological Engineering; Department of Mechanical Engineering; College of Engineering; Graduate School of Sciences and Engineering; School of Medicine; 28376; N/A; 297104Biohybrid microswimmers exploit the swimming and navigation of a motile microorganism to target and deliver cargo molecules in a wide range of biomedical applications. Medical biohybrid microswimmers suffer from low manufacturing yields, which would significantly limit their potential applications. In the present study, a biohybrid design strategy is reported, where a thin and soft uniform coating layer is noncovalently assembled around a motile microorganism.Chlamydomonas reinhardtii(a single-cell green alga) is used in the design as a biological model microorganism along with polymer-nanoparticle matrix as the synthetic component, reaching a manufacturing efficiency of approximate to 90%. Natural biopolymer chitosan is used as a binder to efficiently coat the cell wall of the microalgae with nanoparticles. The soft surface coating does not impair the viability and phototactic ability of the microalgae, and allows further engineering to accommodate biomedical cargo molecules. Furthermore, by conjugating the nanoparticles embedded in the thin coating with chemotherapeutic doxorubicin by a photocleavable linker, on-demand delivery of drugs to tumor cells is reported as a proof-of-concept biomedical demonstration. The high-throughput strategy can pave the way for the next-generation generation microrobotic swarms for future medical active cargo delivery tasks.Publication Open Access Reply to comment on "database for CO2 separation performances of MOFs based on computational materials screening"(American Chemical Society (ACS), 2019) Department of Chemical and Biological Engineering; Altıntaş, Çiğdem; Velioğlu, Sadiye; Keskin, Seda; Researcher; Department of Chemical and Biological Engineering; Graduate School of Sciences and Engineering; N/A; 200650; 40548Publication Open Access Liquid crystal eastomer actuated reconfigurable microscale kirigami metastructures(Wiley, 2021) Zhang, Mingchao; Shahsavan, Hamed; Guo, Yubing; Pena-Francesch, Abdon; Zhang, Yingying; Department of Mechanical Engineering; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; College of Engineering; School of Medicine; 297104Programmable actuation of metastructures with predesigned geometrical configurations has recently drawn significant attention in many applications, such as smart structures, medical devices, soft robotics, prosthetics, and wearable devices. Despite remarkable progress in this field, achieving wireless miniaturized reconfigurable metastructures remains a challenge due to the difficult nature of the fabrication and actuation processes at the micrometer scale. Herein, microscale thermo-responsive reconfigurable metasurfaces using stimuli-responsive liquid crystal elastomers (LCEs) is fabricated as an artificial muscle for reconfiguring the 2D microscale kirigami structures. Such structures are fabricated via two-photon polymerization with sub-micrometer precision. Through rationally designed experiments guided by simulations, the optimal formulation of the LCE artificial muscle is explored and the relationship between shape transformation behaviors and geometrical parameters of the kirigami structures is build. As a proof of concept demonstration, the constructs for temperature-dependent switching and information encryption is applied. Such reconfigurable kirigami metastructures have significant potential for boosting the fundamental small-scale metastructure research and the design and fabrication of wireless functional devices, wearables, and soft robots at the microscale as well.