Publications with Fulltext
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6
Browse
2 results
Search Results
Publication Open Access Improved superconducting properties in the Mg11B2 low activation superconductor prepared by low-temperature sintering(Nature Publishing Group (NPG), 2016) F. Cheng, Y.; Liu, Z. Ma; Hossain, M. S.; Department of Chemistry; Somer, Mehmet Suat; Faculty Member; Department of Chemistry; College of Sciences; 178882Mg11B2 has a great application prospect in the superconducting coils for fusion reactor as the “low activation superconductors”. The un-doped Mg11B2 and Cu-doped Mg11B2 bulks using 11B as a boron precursor were fabricated by low-temperature sintering in present work. It was found that the prepared Mg11B2 low activation superconductors exhibit better Jc performance than all of other Mg11B2 samples reported in previous studies. As for Cu doped Mg11B2, minor Cu addition can obviously improve the Mg11B2 grain crystallization and reduce the amount of MgO impurity. Hence, improved grain connectivity and higher Jc at low fields is obtained in Cu doped Mg11B2 samples. For un-doped samples, refined grains and more MgO impurity with proper size brought about more flux pinning centers, resulting in better Jc performance at high fields.Publication Open Access Direct observation of the dealloying process of a platinum–yttrium nanoparticle fuel cell cathode and its oxygenated species during the oxygen reduction reaction(Royal Society of Chemistry (RSC), 2015) Malacrida, Paolo; Casalongue, Hernan G. Sanchez; Masini, Federico; Hernandez-Fernandez, Patricia; Deiana, Davide; Ogasawara, Hirohito; Stephens, Ifan E. L.; Nilsson, Anders; Chorkendorff, Ib; Department of Chemistry; Kaya, Sarp; Faculty Member; Department of Chemistry; College of Sciences; 116541Size-selected 9 nm PtxY nanoparticles have recently shown an outstanding catalytic activity for the oxygen reduction reaction, representing a promising cathode catalyst for proton exchange membrane fuel cells (PEMFCs). Studying their electrochemical dealloying is a fundamental step towards the understanding of both their activity and stability. Herein, size-selected 9 nm PtxY nanoparticles have been deposited on the cathode side of a PEMFC specifically designed for in situ ambient pressure X-ray photoelectron spectroscopy (APXPS). The dealloying mechanism was followed in situ for the first time. It proceeds through the progressive oxidation of alloyed Y atoms, soon leading to the accumulation of Y3+ cations at the cathode. Acid leaching with sulfuric acid is capable of accelerating the dealloying process and removing these Y3+ cations which might cause long term degradation of the membrane. The use of APXPS under near operating conditions allowed observing the population of oxygenated surface species as a function of the electrochemical potential. Similar to the case of pure Pt nanoparticles, non-hydrated hydroxide plays a key role in the ORR catalytic process.