Publications with Fulltext
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6
Browse
2 results
Search Results
Publication Open Access Detection of biological switches using the method of Groebner bases(BioMed Central, 2019) Department of Chemical and Biological Engineering; Arkun, Yaman; Faculty Member; Department of Chemical and Biological Engineering; College of Engineering; 108526Background: bistability and ability to switch between two stable states is the hallmark of cellular responses. Cellular signaling pathways often contain bistable switches that regulate the transmission of the extracellular information to the nucleus where important biological functions are executed. Results in this work we show how the method of Groebner bases can be used to detect bistability and output switchability. The method of Groebner bases can be seen as a multivariate, non-linear generalization of the Gaussian elimination for linear systems which conveniently seperates the variables and drastically simplifies the simultaneous solution of polynomial equations. A necessary condition for fixed-point state bistability is for the Grobner basis to have three distinct solutions for the state. A sufficient condition is provided by the eigenvalues of the local Jacobians. We also introduce the concept of output switchability which is defined as the ability of an output of a bistable system to switch between two different stable steady-state values. It is shown that bistability does not necessarily guarantee switchability of every state variable of the system. We further show that, for a bistable system, the necessary conditions for output switchability can be derived using the Groebner basis. The theoretical results are incorporated into an analysis procedure and applied to several systems including the AKT (Protein kinase B), RAS (Rat Sarcoma) and MAPK (Mitogen-activated protein kinase) signal transduction pathways. Results demonstrate that the Groebner bases can be conveniently used to analyze biological switches by simultaneously detecting bistability and output switchability. Conclusion: the Groebner bases provides a novel methodology to analyze bistability. Results clarify the distinction between bistability and output switchability which is lacking in the literature. We have shown that theoretically, it is possible to have an output subspace of an n-dimensional bistable system where certain variables cannot switch. It is possible to construct such systems as we have done with two reaction networks.Publication Open Access Classification of drug molecules considering their IC(50) values using mixed-integer linear programming based hyper-boxes method(BioMed Central, 2008) Department of Industrial Engineering; Department of Chemical and Biological Engineering; Armutlu, Pelin; Özdemir, Muhittin Emre; Yüksektepe, Fadime Üney; Kavaklı, İbrahim Halil; Türkay, Metin; Faculty Member; Department of Industrial Engineering; Department of Chemical and Biological Engineering; The Center for Computational Biology and Bioinformatics (CCBB); College of Engineering; N/A; N/A; N/A; 40319; 24956Background: A priori analysis of the activity of drugs on the target protein by computational approaches can be useful in narrowing down drug candidates for further experimental tests. Currently, there are a large number of computational methods that predict the activity of drugs on proteins. In this study, we approach the activity prediction problem as a classification problem and, we aim to improve the classification accuracy by introducing an algorithm that combines partial least squares regression with mixed-integer programming based hyper-boxes classification method, where drug molecules are classified as low active or high active regarding their binding activity (IC(50) values) on target proteins. We also aim to determine the most significant molecular descriptors for the drug molecules. Results: We first apply our approach by analyzing the activities of widely known inhibitor datasets including Acetylcholinesterase (ACHE), Benzodiazepine Receptor (BZR), Dihydrofolate Reductase (DHFR), Cyclooxygenase-2 (COX-2) with known IC(50) values. The results at this stage proved that our approach consistently gives better classification accuracies compared to 63 other reported classification methods such as SVM, Naive Bayes, where we were able to predict the experimentally determined IC50 values with a worst case accuracy of 96%. To further test applicability of this approach we first created dataset for Cytochrome P450 C17 inhibitors and then predicted their activities with 100% accuracy. Conclusion: Our results indicate that this approach can be utilized to predict the inhibitory effects of inhibitors based on their molecular descriptors. This approach will not only enhance drug discovery process, but also save time and resources committed.