Publications with Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    PublicationOpen Access
    Machine learning helps identify CHRONO as a circadian clock component
    (Public Library of Science, 2014) Anafi, Ron C.; Lee, Yoo; Sato, Trey K.; Venkataraman, Anand; Ramanathan, Chidambaram; Hughes, Michael E.; Baggs, Julie E.; Growe, Jacqueline; Liu, Andrew C.; Kim, Junhyong; Hogenesch, John B.; Kavaklı, İbrahim Halil; Faculty Member; College of Engineering; 40319
    Over the last decades, researchers have characterized a set of ‘‘clock genes’’ that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3). One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics.
  • Thumbnail Image
    PublicationOpen Access
    Classification of drug molecules considering their IC(50) values using mixed-integer linear programming based hyper-boxes method
    (BioMed Central, 2008) Department of Industrial Engineering; Department of Chemical and Biological Engineering; Armutlu, Pelin; Özdemir, Muhittin Emre; Yüksektepe, Fadime Üney; Kavaklı, İbrahim Halil; Türkay, Metin; Faculty Member; Department of Industrial Engineering; Department of Chemical and Biological Engineering; The Center for Computational Biology and Bioinformatics (CCBB); College of Engineering; N/A; N/A; N/A; 40319; 24956
    Background: A priori analysis of the activity of drugs on the target protein by computational approaches can be useful in narrowing down drug candidates for further experimental tests. Currently, there are a large number of computational methods that predict the activity of drugs on proteins. In this study, we approach the activity prediction problem as a classification problem and, we aim to improve the classification accuracy by introducing an algorithm that combines partial least squares regression with mixed-integer programming based hyper-boxes classification method, where drug molecules are classified as low active or high active regarding their binding activity (IC(50) values) on target proteins. We also aim to determine the most significant molecular descriptors for the drug molecules. Results: We first apply our approach by analyzing the activities of widely known inhibitor datasets including Acetylcholinesterase (ACHE), Benzodiazepine Receptor (BZR), Dihydrofolate Reductase (DHFR), Cyclooxygenase-2 (COX-2) with known IC(50) values. The results at this stage proved that our approach consistently gives better classification accuracies compared to 63 other reported classification methods such as SVM, Naive Bayes, where we were able to predict the experimentally determined IC50 values with a worst case accuracy of 96%. To further test applicability of this approach we first created dataset for Cytochrome P450 C17 inhibitors and then predicted their activities with 100% accuracy. Conclusion: Our results indicate that this approach can be utilized to predict the inhibitory effects of inhibitors based on their molecular descriptors. This approach will not only enhance drug discovery process, but also save time and resources committed.
  • Thumbnail Image
    PublicationOpen Access
    A compressed sensing framework for efficient dissection of neural circuits
    (Nature Publishing Group (NPG), 2019) Lee, Jeffrey B.; Yonar, Abdullah; Hallacy, Timothy; Shen, Ching-Han; Milloz, Josselin; Srinivasan, Jagan; Ramanathan, Sharad; Department of Physics; Kocabaş, Aşkın; Department of Physics; College of Sciences; 227753
    A fundamental question in neuroscience is how neural networks generate behavior. The lack of genetic tools and unique promoters to functionally manipulate specific neuronal subtypes makes it challenging to determine the roles of individual subtypes in behavior. We describe a compressed sensing-based framework in combination with non-specific genetic tools to infer candidate neurons controlling behaviors with fewer measurements than previously thought possible. We tested this framework by inferring interneuron subtypes regulating the speed of locomotion of the nematode Caenorhabditis elegans. We developed a real-time stabilization microscope for accurate long-term, high-magnification imaging and targeted perturbation of neural activity in freely moving animals to validate our inferences. We show that a circuit of three interconnected interneuron subtypes, RMG, AVB and SIA control different aspects of locomotion speed as the animal navigates its environment. Our work suggests that compressed sensing approaches can be used to identify key nodes in complex biological networks.