Publications with Fulltext
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6
Browse
9 results
Search Results
Publication Open Access The relationship between co-speech gesture production and macrolinguistic discourse abilities in people with focal brain injury(Elsevier, 2018) Chatterjee, Anjan; Department of Psychology; Akbıyık, Seda; Karaduman, Ayşenur; Göksun, Tilbe; Master Student; Faculty Member; Department of Psychology; College of Social Sciences and Humanities; N/A; N/A; 47278Brain damage is associated with linguistic deficits and might alter co-speech gesture production. Gesture production after focal brain injury has been mainly investigated with respect to intrasentential rather than discourse-level linguistic processing. In this study, we examined 1) spontaneous gesture production patterns of people with left hemisphere damage (LHD) or right hemisphere damage (RHD) in a narrative setting, 2) the neural structures associated with deviations in spontaneous gesture production in these groups, and 3) the relationship between spontaneous gesture production and discourse level linguistic processes (narrative complexity and evaluation competence). Individuals with LHD or RHD (17 people in each group) and neurotypical controls (n = 13) narrated a story from a picture book. Results showed that increase in gesture production for LHD individuals was associated with less complex narratives and lesions of individuals who produced more gestures than neurotypical individuals overlapped in frontal-temporal structures and basal ganglia. Co-speech gesture production of RHD individuals positively correlated with their evaluation competence in narrative. Lesions of RHD individuals who produced more gestures overlapped in the superior temporal gyrus and the inferior parietal lobule. Overall, LHD individuals produced more gestures than neurotypical individuals. The groups did not differ in their use of different gesture forms except that LHD individuals produced more deictic gestures per utterance than RHD individuals and controls. Our findings are consistent with the hypothesis that co-speech gesture production interacts with macro-linguistic levels of discourse and this interaction is affected by the hemispheric lateralization of discourse abilities.Publication Open Access Birdsong learning is mutually beneficial for tutee and tutor in song sparrows(Elsevier, 2020) Beecher, Michael D.; Campbell, S. Elizabeth; Department of Psychology; Akçay, Çağlar; Faculty Member; Department of Psychology; College of Social Sciences and Humanities; 272053Song learning is generally assumed to be beneficial for a young songbird, but merely incidental, without costs or benefits, for the older song ‘tutors’. In the present study we contrast two mutually exclusive hypotheses about the tutor/tutee relationship: (1) that it is cooperative, or at least mutually tolerant, with tutor and tutee mutually benefiting from their relationship, versus (2) that it is competitive, with tutor and tutee competing over territory, so that one or the other suffers negative fitness consequences of their relationship. In a field study of three consecutive cohorts of song sparrows, Melospiza melodia morphna, we determined the older bird (primary tutor) from whom the young bird (tutee) learned most of his songs, and how long tutee and primary tutor survived subsequently. We found that the more songs a tutee learns from his primary tutor, the longer their mutual survival on their respective territories. While the number of songs they share predicts the mutual survival of tutor and tutee, it does not predict the independent survival of tutor or tutee, suggesting that the benefit each receives from song sharing exists only so long as both survive.Publication Open Access Territory establishment, song learning strategies and survival in song sparrows(Wiley, 2020) Campbell, S. Elizabeth; Darling, Saethra; Beecher, Michael D.; Department of Psychology; Akçay, Çağlar; Faculty Member; Department of Psychology; College of Social Sciences and Humanities; 272053In most songbirds, the processes of song learning and territory establishment overlap in the early life and a young bird usually winds up with songs matching those of his territorial neighbors in his first breeding season. In the present study, we examined the relationships among the timing of territory establishment, the pattern of song learning and territorial success in a sedentary population of song sparrows (Melospiza melodia). Males in this population tend to learn their songs from their neighbors and consequently they show high song sharing with neighbors and use these shared songs preferentially in interactions with them. Males also show significant variation in the timing of territory establishment, ranging from their natal summer to the next spring. Using a three-year dataset, we found that the timing of territory establishment did not systematically affect the composition of the song repertoire of the tutee: early establishers and late establishers learned equally as much from their primary tutors and had a similar number of tutors and similar repertoire sizes, nor did timing of territory establishment affect subsequent survival on territory. Therefore, the song-learning program of song sparrows seems versatile enough to lead to high song sharing even for birds that establish territories relatively late.Publication Open Access Age-dependent decline in learning and memory performances of WAG/Rij rat model of absence epilepsy(BioMed Central, 2012) Karson, Ayşe; Utkan, Tijen; Arıcıoğlu, Feyza; Ateş, Nurbay; Department of Psychology; Balcı, Fuat; Faculty Member; Department of Psychology; College of Social Sciences and Humanities; 51269Recent clinical studies revealed emotional and cognitive impairments associated with absence epilepsy. Preclinical research with genetic models of absence epilepsy however have primarily focused on dysfunctional emotional processes and paid relatively less attention to cognitive impairment. In order to bridge this gap, we investigated age-dependent changes in learning and memory performance, anxiety-like behavior, and locomotor activity of WAG/Rij rats (a valid model of generalized absence epilepsy) using passive avoidance, Morris water maze, elevated plus maze, and locomotor activity cage. We tested 5 month-old and 13 month-old WAG/Rij rats and compared their performance to age-matched Wistar rats. Results revealed a decline in emotional and spatial memory of WAG/Rij rats compared to age-matched Wistar rats only at 13 months of age. Importantly, there were no significant differences between WAG/Rij and Wistar rats in terms of anxiety-like behavior and locomotor activity at either age. Results pointed at age-dependent learning and memory deficits in the WAG/Rij rat model of absence epilepsy.Publication Open Access Aggression and multi-modal signaling in noise in a common urban songbird(Springer, 2022) Department of Media and Visual Arts; Department of Psychology; Akçay, Çağlar; Yelimlieş, Alper; Önsal, Çağla; Faculty Member; Department of Media and Visual Arts; Department of Psychology; College of Social Sciences and Humanities; 272053; N/A; N/AAnthropogenic noise may disrupt signals used to mediate aggressive interactions, leading to more physical aggression between opponents. One solution to this problem is to switch signaling effort to a less noisy modality (e.g., the visual modality). In the present study, we investigate aggressive behaviors and signaling in urban and rural male European robins (Erithacus rubecula) in response to simulated intrusions with or without experimental noise. First, we predicted that urban birds, living in noisier habitats, would be generally more aggressive than rural birds. We also predicted that during simulated intrusions with experimental noise, robins would increase their physical aggression and show a multi-modal shift, i.e., respond with more visual threat displays and sing fewer songs. Finally, we expected the multi-modal shift in response to noise to be stronger in urban birds compared to rural birds. The results showed that urban birds were more aggressive than rural robins, but an increase in aggression with experimental noise was seen only in the rural birds. Urban but not rural birds decreased their song rate in response to noise. Contrary to the multi-modal shift hypothesis, however, there was no evidence of a concurrent increase in visual signals. These results point to a complex role of immediate plasticity and longer-term processes in affecting communication during aggressive interactions under anthropogenic noise. Significance statement Human activity has an enormous effect on wildlife, including on their social behavior. Animals living in urban areas often tend to be more aggressive than those living in rural areas, which may be due to urban acoustic noise making communication between individuals more difficult. In a study with a common songbird, the European robin, we investigated the role of urban acoustic noise in aggression and territorial communication. Urban robins were more aggressive than rural robins, and additional noise in the territory increased aggression in rural but not urban robins. While urban robins decreased their singing effort with additional noise, they did not increase visual signals concurrently. These results suggest that noise can indeed make animals behave more aggressively although the effect may depend on how noisy it is already. These results further our understanding of how human-made noise changes animal communication and social behavior.Publication Open Access Can GLP-1 be a target for reward system related disorders? a qualitative synthesis and systematic review analysis of studies on palatable food, drugs of abuse, and alcohol(Frontiers, 2021) Doğruöz, Ramazan Efe; Eser, Hale Yapıcı; Eren, Candan Yasemin; Yigit, Arya; Faculty Member; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); School of Medicine; 134359; N/A; N/AThe role of glucagon-like peptide 1 (GLP-1) in insulin-dependent signaling is well-known; GLP-1 enhances glucose-dependent insulin secretion and lowers blood glucose in diabetes. GLP-1 receptors (GLP-1R) are also widely expressed in the brain, and in addition to its role in neuroprotection, it affects reward pathways. This systematic review aimed to analyze the studies on GLP-1 and reward pathways and its currently identified mechanisms. Methods: "Web of Science" and "Pubmed" were searched to identify relevant studies using GLP-1 as the keyword. Among the identified 26,539 studies, 30 clinical, and 71 preclinical studies were included. Data is presented by grouping rodent studies on palatable food intake, drugs of abuse, and studies on humans focusing on GLP-1 and reward systems. Results: GLP-1Rs are located in reward-related areas, and GLP-1, its agonists, and DPP-IV inhibitors are effective in decreasing palatable food intake, along with reducing cocaine, amphetamine, alcohol, and nicotine use in animals. GLP-1 modulates dopamine levels and glutamatergic neurotransmission, which results in observed behavioral changes. In humans, GLP-1 alters palatable food intake and improves activity deficits in the insula, hypothalamus, and orbitofrontal cortex (OFC). GLP-1 reduces food cravings partially by decreasing activity to the anticipation of food in the left insula of obese patients with diabetes and may inhibit overeating by increasing activity to the consumption of food in the right OFC of obese and left insula of obese with diabetes. Conclusion: current preclinical studies support the view that GLP-1 can be a target for reward system related disorders. More translational research is needed to evaluate its efficacy on human reward system related disorders.Publication Open Access Song overlapping, noise, and territorial aggression in great tits(Oxford University Press (OUP), 2020) Avşar, Alican; Bilgin, C. Can; Department of Psychology; Akçay, Çağlar; Porsuk, Yasin Kağan; Çabuk, Dilan; Faculty Member; Teaching Faculty; Department of Psychology; College of Social Sciences and Humanities; Graduate School of Social Sciences and Humanities; 272053; N/A; N/ACommunication often happens in noisy environments where interference from the ambient noise and other signalers may reduce the effectiveness of signals which may lead to more conflict between interacting individuals. Signalers may also evolve behaviors to interfere with signals of opponents, for example, by temporally overlapping them with their own, such as the song overlapping behavior that is seen in some songbirds during aggressive interactions. Song overlapping has been proposed to be a signal of aggressive intent, but few studies directly examined the association between song overlapping and aggressive behaviors of the sender. In the present paper, we examined whether song overlapping and ambient noise are associated positively with aggressive behaviors. We carried out simulated territorial intrusions in a population of great tits (Pares major) living in an urban-rural gradient to assess signaling and aggressive behaviors. Song overlapping was associated negatively with aggressive behaviors males displayed against a simulated intruder. This result is inconsistent with the hypothesis that song overlapping is an aggressive signal in this species. Ambient noise levels were associated positively with aggressive behaviors but did not correlate with song rate, song duration, or song overlapping. Great tits in noisy urban habitats may display higher levels of aggressive behaviors due to either interference of noise in aggressive communication or another indirect effect of noise.Publication Open Access The NMDA receptor antagonist MK-801 fails to impair long-term recognition memory in mice when the state-dependency of memory is controlled(Elsevier, 2019) Austen, Joseph M.; Eacott, Madeline J.; Easton, Alexander; Sanderson, David J.; Department of Psychology; Department of Psychology; Graduate School of Social Sciences and HumanitiesNMDA receptor-dependent synaptic plasticity has been proposed to be important for encoding of memories. Consistent with this hypothesis, the non-competitive NMDA receptor antagonist, MK-801, has been found to impair performance on tests of memory. Interpretation of some of these findings has, however, been complicated by the fact that the drug-state of animals has differed during encoding and tests of memory. Therefore, it is possible that MK-801 may result in state-dependent retrieval or expression of memory rather than actually impairing encoding itself. We tested this hypothesis in mice using tests of object recognition memory with a 24 hour delay between the encoding and test phase. Mice received injections of either vehicle or MK-801 prior to the encoding phase and the test phase. In Experiment 1, a low dose of MK-801 (0.01 mg/kg) impaired performance when the drug-state (vehicle or MK-801) of mice changed between encoding and test, but there was no significant effect of MK-801 on encoding. In Experiment 2, a higher dose of MK-801 (0.1 mg/kg) failed to impair object recognition memory when mice received the drug prior to both encoding and test compared to mice that received vehicle. MK-801 did not affect object exploration, but it did induce locomotor hyperactivity at the higher dose. These results suggest that some previous demonstrations of MK-801 effects may reflect a failure to express or retrieve memory due to the state-dependency of memory rather than impaired encoding of memory.Publication Open Access Probabilistic information modulates the timed response inhibition deficit in aging mice(Frontiers, 2019) Department of Psychology; Balcı, Fuat; Gür, Ezgi; Duyan, Yalçın Akın; Faculty Member; PhD Student; PhD Student; Department of Psychology; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Graduate School of Social Sciences and HumanitiesHow interval timing is affected by aging constitutes one of the contemporary research questions. There is however a limited number of studies that investigate this research question in animal models of aging. The current study investigated how temporal decision-making is affected by aging. Initially, we trained young (2-3 month-old) and old C57BL/6J male mice (18-19 month-old) independently with short (3 s) and long (9 s) intervals by signaling, in each trial, the hopper associated with the interval that is in effect in that trial. The probability of short and long trials was manipulated (0.25 or 0.75) for different animals in each age group. During testing, both hoppers were illuminated, and thus active trial type was not differentiated. We expected mice to spontaneously combine the independently acquired time interval-location-probability information to adaptively guide their timing behavior in test trials. This adaptive ability and the resultant timing behavior were analyzed and compared between the age groups. Both young and old mice indeed adjusted their timing behavior in an abrupt fashion based on the independently acquired temporal-spatial-probabilistic information. The core timing ability of old mice was also intact. However, old mice had difficulty in terminating an ongoing timed response when the probability for the short trial was higher and this difference disappeared in the group that was exposed to a lower probability of short trials. These results suggest an inhibition problem in old mice as reflected through the threshold modulation process in timed decisions, which is cognitively penetrable to the probabilistic information.