Research Outputs
Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2
Browse
34 results
Search Results
Publication Metadata only A new class of adiabatic cyclic states and geometric phases for non-Hermitian Hamiltonians(Elsevier Science Bv, 1999) N/A; Department of Mathematics; Mostafazadeh, Ali; Faculty Member; Department of Mathematics; College of Sciences; 4231For a T-periodic non-Hermitian Hamiltonian H(t), we construct a class of adiabatic cyclic states of period T which are not eigenstates of the initial Hamiltonian H(O). We show that the corresponding adiabatic geometric phase angles are real and discuss their relationship with the conventional complex adiabatic geometric phase angles. We present a detailed calculation of the new adiabatic cyclic states and their geometric phases for a non-Hermitian analog of the spin 1/2 particle in a precessing magnetic field.Publication Metadata only A theoretical study of structural defects in conjugated polymers(Elsevier Science Sa, 1999) Yurtsever, Mine; Department of Chemistry; Yurtsever, İsmail Ersin; Faculty Member; Department of Chemistry; College of Sciences; 7129Accurate ab-initio calculations are performed for pyrrole and thiophene oligomers bonded through alpha and beta carbons. The thermodynamical stabilitiy of all possible binding types including the branched forms of tetramers and pentamers are compared. Employing the probabilities obtained from these calculations, a Monte Carlo type growth scheme is applied to predict branching as functions of the chain length and temperature. A high degree of branching for polypyrrole is reported whereas the linear chains dominate the structure of polythiophene.Publication Open Access Angular-momentum-driven chaos in small clusters(American Physical Society (APS), 1998) Department of Chemistry; Yurtsever, İsmail Ersin; Faculty Member; Department of Chemistry; College of Sciences; 7129The effects of the rotational motion on the chaotic behavior of triatomic Lennard-Jones clusters are studied. A set of initial momentum distributions with tunable parameters is chosen to correspond to various rigid-body rotations around symmetry axes of the cluster. By smoothly varying the direction of the initial kicks given to the cluster, periodic transitions between regular and chaotic regimes are obtained. A study of initial conditions leading up to such transitions shows that the major factor that determines the extent of the chaotic behavior is the initial partitioning of the kinetic energy between the rotational and vibrational motion. From the analysis of the time evolution of various properties it is concluded that the basic role of this initial partitioning is to control the energy transfer between the kinetic and the potential energy.Publication Metadata only Chaos in rotating triatomic clusters(Editions Physique, 1997) Department of Chemistry; Yurtsever, İsmail Ersin; Faculty Member; Department of Chemistry; College of Sciences; 7129Lyapunov exponent distributions of rotating triatomic Lennard-Jones clusters are calculated to analyze the effects of the vibrational and rotational motion on the extent of chaotic behavior. Initial momentum components are assigned to atoms either to rotate the clusters around symmetry axes or to generate random angular momenta. In both cases, it is seen that the initial kinetic energy assigned to vibrational modes is the dominant factor which determines the degree of chaos.Publication Open Access Chaotic behavior of triatomic clusters(American Physical Society (APS), 1997) Elmacı, N.; Department of Chemistry; Yurtsever, İsmail Ersin; Faculty Member; Department of Chemistry; College of Sciences; 7129The dynamics of triatomic clusters is investigated employing two-body Lennard-Jones and three-body Axilrod-Teller potential functions. Lyapunov exponents are calculated for the total energy range of -2.70 epsilon <E< -0.72 epsilon. The effects of the initial geometry of the cluster, its angular momentum, and the magnitude of three-body interactions are analyzed. It has been found that the dominating factor for the extent of chaotic behavior is the energy assigned to vibrational modes. The introduction of the rotational motion regularizes the dynamics in spite of a higher degree of nonlinearity. The three-body terms in the potential function affect the extent of the chaos in different manners depending on the initial geometry of the cluster. Finally, the time evolution of heterogeneous clusters generated by varying the size, mass, and the interaction strength of a single atom is observed. Their Lyapunov exponent spectra show that the additional nonlinearity reduces the chaotic behavior of the system in most of the cases.Publication Open Access Comment on “Identical motion in classical and quantum mechanics”(American Physical Society (APS), 1999) Department of Mathematics; Department of Physics; Mostafazadeh, Ali; Faculty Member; Department of Mathematics; Department of Physics; College of Sciences; 4231Makowski and Konkel [Phys. Rev. A 58, 4975 (1998)] have obtained certain classes of potentials which lead to identical classical and quantum Hamilton-Jacobi equations. We obtain the most general form of these potentials.Publication Metadata only Comparative experimental study of continuous-wave power performance in room-temperature Cr4+:forsterite lasers(Optica Publishing Group, 1998) Department of Physics; Sennaroğlu, Alphan; Faculty Member; Department of Physics; College of Sciences; 23851Comparative experimental study of power performance with three different Cr4+:forsterite crystals yields 900 mW of 1.26-μm continuous-wave output power with 29.5% efficiency at 15oC.Publication Metadata only Comparison between difference-frequency generation and parametric fluorescence in quasi-phase-matched lithium niobate stripe waveguides(IEEE, 1996) Baldi, P.; El Hadi, K.; De Micheli, M. P.; Ostrowsky, D.B.; Department of Physics; Sundheimer, Michael; Faculty Member; Department of Physics; College of Sciences; N/ATuning curves and gain are two relevant parameters for integrated optical parametric oscillators. We show in this paper that they can be determined with a good precision without building a high-finesse cavity by measurement of the optical parametric fluorescence and difference-frequency generation. In the first part of this paper, we compare theoretically the guided optical parametric fluorescence and the guided difference-Frequency generation in the quasi-phase matching configuration. In the second part, we compare experimental results on optical parametric fluorescence in the 1.2-2.2-μm region and optical difference-frequency generation from a 1.55-μm laser diode using a pump wavelength between 775-795 nm in quasi-phase-matched lithium niobate stripe waveguides. This comparison shows that the gain measured by both methods is identical, but, while parametric fluorescence allows us to obtain the quasi-phase-matching curve, the difference-frequency generation gives a simpler and more accurate measurement of the gain. The combination of these two techniques provides therefore a powerful tool for evaluating the different fabrication processes of the nonlinear waveguides, without actually fabricating a parametric oscillator.Publication Metadata only Computational studies of cyclobutadiene and benzocyclobutene fused to p- and o-quinone(American Chemical Society (ACS), 1998) McKee, Michael L.; Balcı, Metin; Kılıç, Hamdullah; Department of Chemistry; Yurtsever, İsmail Ersin; Faculty Member; Department of Chemistry; College of Sciences; 7129Cyclobutadiene and benzocyclobutenes fused to o- and p-quinone have been studied by computational methods. Geometries were optimized at the B3LYP/6-31G* level, and absolute NMR shielding values were calculated using the GIAO method with the HF/6-31G* basis set. NICS values of the compounds 8b,c and 9b,c indicate strong antiaromatic character for cyclobutadiene units. However, 8a and 9a show negative NICS values where the quinodal system reduces the antiaromaticity significantly by forcing these systems to possess a dimethylene-like structure. The calculated C-13 NMR chemical shifts of 6-9 and parent systems are in very good agreement with literature values.Publication Metadata only Efficient continuous-wave operation of a radiatively cooled CR4+: forsterite laser at room temperature(Optical Society of America, 1997) Department of Physics; Department of Physics; Sennaroğlu, Alphan; Kurt, Adnan; Faculty Member; Teaching Faculty; Department of Physics; College of Sciences; College of Sciences; 23851; 194455Results of a detailed experimental investigation aimed at reducing the thermal loading problem in a cw Cr(4+):forsterite laser at elevated temperatures are presented. From a Cr(4+):forsterite crystal with a differential absorption coefficient of 0.57 cm(-1), as much as 900 mW of cw output power has been obtained at 1.26 mum and at a crystal boundary temperature of 15 degrees C with an absorbed pump power of only 4.5 W at 1.06 mum. No chopping of the pump beam was necessary. An efficient radiative cooling technique was further employed to cool the laser and no subsequent power fading was observed. To the author's knowledge, the measured absorbed power slope efficiency of 29.5% represents the highest cw power performance reported to date from a Cr(4+):forsterite laser pumped by a Nd:YAG laser around room temperature. The role of the low differential absorption coefficient in the reduction of thermal loading is further elucidated by presenting comparative cw power performance data with a second Cr(4+):forsterite crystal having a differential absorption coefficient of 1.78 cm(-1) in the temperature range between 12 and 35 degrees C. Finally, some interesting multipulse effects of the laser observed in the millisecond regime during quasi-cw operation at 50% duty cycle are described.