Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 10 of 2464
  • Placeholder
    Publication
    10-NJ multipass-cavity femtosecond CR3+: LiCAF laser pumped by low-power single-mode diodes
    (Optical Society of America, 2009) Kärtner, Franz X.; Fujimoto, James G.; Demirbaş, Ümit; Department of Physics; Sennaroğlu, Alphan; Faculty Member; Department of Physics; College of Sciences; 23851
    We report on the generation of 9.9-nJ, 95-fs pulses at a repetition rate of 9.58 MHz from a multipass-cavity Cr3+:LiCAF laser pumped by single-mode diodes with a total absorbed pump power of only 540 mW.
  • Placeholder
    Publication
    2D scanning MEMS stage integrated with microlens arrays for high-resolution beam steering
    (IEEE, 2009) Department of Electrical and Electronics Engineering; N/A; Department of Electrical and Electronics Engineering; N/A; N/A; N/A; Ürey, Hakan; Gökçe, Sertan Kutal; Holmstrom, Sven; Arslan, Aslıhan; Ataman, Çağlar; Seren, Hüseyin Rahmi; Faculty Member; Master Student; Researcher; Master Student; PhD Student; Master Student; Other; Department of Electrical and Electronics Engineering; College of Engineering; Graduate School of Sciences and Engineering; College of Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; N/A; 8579; N/A; N/A; N/A; N/A; N/A; N/A
    A novel MEMS stage using one set of comb fingers, capable of 2-axis motion is designed and developed. With an integrated 1.1mm square microlens-array it deflects 40um in-plane at 60V and 95um out-of-plane at 100V.
  • Placeholder
    Publication
    3D convective Cahn-Hilliard equation
    (Amer Inst Mathematical Sciences-Aims, 2007) Eden, Alp; Department of Mathematics; Kalantarov, Varga; Faculty Member; Department of Mathematics; College of Sciences; 117655
    We consider the initial boundary value problem for the 3D convective Cahn - Hilliard equation with periodic boundary conditions. This gives rise to a continuous dynamical system on L-2(ohm). Absorbing balls in L-2(ohm), H-per(1)(ohm) and H-per(2)(ohm) are shown to exist. Combining with the compactness property of the solution semigroup we conclude the existence of the global attractor. Restricting the dynamical system on the absorbing ball in H-per(2)(ohm) and using the general framework in Eden et. all. [] the existence of an exponential attractor is guaranteed. This approach also gives an explicit upper estimate of the dimension of the exponential attractor, albeit of the global attractor.
  • Placeholder
    Publication
    3D display dependent quality evaluation and rate allocation using scalable video coding
    (Ieee, 2009) N/A; N/A; Department of Electrical and Electronics Engineering; Saygılı, Görkem; Gürler, Cihat Göktuğ; Tekalp, Ahmet Murat; Master Student; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 26207
    It is well known that the human visual system can perceive high frequency content in 3D, even if that information is present in only one of the views. Then, the best 3D perception quality may be achieved by allocating the rates of the reference (right) and auxiliary (left) views asymmetrically. However the question of whether the rate reduction for the auxiliary view should be achieved by spatial resolution reduction (coding a downsampled version of the video followed by upsampling after decoding) or quality (QP) reduction is an open issue. This paper shows that which approach should be preferred depends on the 3D display technology used at the receiver. Subjective tests indicate that users prefer lower quality (larger QP) coding of the auxiliary view over lower resolution coding if a "full spatial resolution" 3D display technology (such as polarized projection) is employed. On the other hand, users prefer lower resolution coding of the auxiliary view over lower quality coding if a "reduced spatial resolution" 3D display technology (such as parallax barrier - autostereoscopic) is used. Therefore, we conclude that for 3D IPTV services, while receiving full quality/resolution reference view, users should subscribe to differently scaled versions of the auxiliary view depending on their 3D display technology. We also propose an objective 3D video quality measure that takes the 3D display technology into account.
  • Thumbnail Image
    PublicationRestricted
    3D Display system using scanning LED array modules
    (Koç University, 2008) Sayınta, Murat; Ürey, Hakan; 0000-0002-2031-7967; Koç University Graduate School of Sciences and Engineering; Electrical and Computer Engineering; 8579
  • Placeholder
    Publication
    3D face recognition
    (Institute of Electrical and Electronics Engineers (IEEE), 2006) Dutaǧaci, H.; Sankur, B.; Department of Computer Engineering; Yemez, Yücel; Faculty Member; Department of Computer Engineering; College of Engineering; 107907
    In this paper, we compare face recognition performances of various features applied on registered 3D scans of faces. The features we compare are DFT or DCT- based features, ICA-based features and NNMF-based features. We apply the feature extraction techniques to three different representations of registered faces: 3D point clouds, 2D depth images and 3D voxel representations. We also consider block-based DFT or DCT-based local features on 2D depth images and their fusion schemes. Experiments using different combinations of representation types and feature vectors are conducted on the 3D-RMA dataset. / Bu bildiride, kayıtlı 3B yüz taramalarında uygulanan çeşitli özelliklerin yüz tanıma performanslarını karşılaştırıyoruz. Karşılaştırdığımız özellikler, DFT veya DCT tabanlı özellikler, ICA tabanlı özellikler ve NNMF tabanlı özelliklerdir. Öznitelik çıkarma tekniklerini kayıtlı yüzlerin üç farklı temsiline uyguluyoruz: 3B nokta bulutları, 2B derinlik görüntüleri ve 3B voksel temsilleri. Ayrıca, 2D derinlik görüntüleri ve bunların füzyon şemaları üzerindeki blok tabanlı DFT veya DCT tabanlı yerel özellikleri de dikkate alıyoruz. 3D-RMA veri seti üzerinde farklı temsil türleri ve özellik vektörleri kombinasyonları kullanılarak deneyler yapılmıştır.
  • Thumbnail Image
    PublicationOpen Access
    3D face recognition by projection based methods
    (Society of Photo-optical Instrumentation Engineers (SPIE), 2006) Dutaǧaci, Helin; Sankur, Bülent; Department of Computer Engineering; Yemez, Yücel; Faculty Member; Department of Computer Engineering; College of Engineering
    In this paper, we investigate recognition performances of various projection-based features applied on registered 3D scans of faces. Some features are data driven, such as ICA-based features or NNMF-based features. Other features are obtained using DFT or DCT-based schemes. We apply the feature extraction techniques to three different representations of registered faces, namely, 3D point clouds, 2D depth images and 3D voxel. We consider both global and local features. Global features are extracted from the whole face data, whereas local features are computed over the blocks partitioned from 2D depth images. The block-based local features are fused both at feature level and at decision level. The resulting feature vectors are matched using Linear Discriminant Analysis. Experiments using different combinations of representation types and feature vectors are conducted on the 3D-RMA dataset.
  • Placeholder
    Publication
    3D model retrieval using probability density-based shape descriptors
    (IEEE Computer Society, 2009) Akgul, Ceyhun Burak; Sankur, Buelent; Schmitt, Francis; Department of Computer Engineering; Yemez, Yücel; Faculty Member; Department of Computer Engineering; College of Engineering; 107907
    We address content-based retrieval of complete 3D object models by a probabilistic generative description of local shape properties. The proposed shape description framework characterizes a 3D object with sampled multivariate probability density functions of its local surface features. This density-based descriptor can be efficiently computed via kernel density estimation (KDE) coupled with fast Gauss transform. The nonparametric KDE technique allows reliable characterization of a diverse set of shapes and yields descriptors which remain relatively insensitive to small shape perturbations and mesh resolution. Density-based characterization also induces a permutation property which can be used to guarantee invariance at the shape matching stage. As proven by extensive retrieval experiments on several 3D databases, our framework provides state-of-the-art discrimination over a broad and heterogeneous set of shape categories.
  • Placeholder
    Publication
    3D object matching via multivariate shape distributions
    (Institute of Electrical and Electronics Engineers (IEEE), 2005) Akgül, C.B.; Sankur, B.; Schmitt, F.; Department of Computer Engineering; Yemez, Yücel; Faculty Member; Department of Computer Engineering; College of Engineering; 107907
    3B nesne eşleştirme literatüründe, problemi şekil dağılımlarının karşılaştırılmasına indirgeyen yöntemler bulunmaktadır. Şekil dağılımı, 3B nesne yüzeyi üzerinde hesaplanan bir işlevin değerlerinin olasılık dağılımı olarak tanımlanır. Bu çalışmada varolan yöntemi, birden çok işlevin getirdiği şekil bilgisinden aynı anda yararlanacak şekilde genişletiyoruz. Çokboyutlu şekil dağılımları adını verdiğimiz bu 3B nesne betimleyicilerini, örnek bir 3B nesne veri tabanındaki nesneler için parametrik olmayan yaklaşımlarla kestiriyor, karşılaştırmaları alternatif metrikler yoluyla yapıyoruz. Elde edilen kesinlik-geri getirme eğrileri çokboyutlu şekil dağılımlarının karşılaştırılmasının yeni bir 3B nesne eşleştirme paradigması olabileceğini göstermektedir.
  • Placeholder
    Publication
    3D progressive compression with octree particles
    (Akademische Verlagsgesellsch Aka Gmbh, 2002) Schmitt, Francis; Department of Computer Engineering; N/A; Yemez, Yücel; Faculty Member; Department of Computer Engineering; College of Engineering; N/A; 107907; N/A
    This paper improves the storage efficiency of the progressive particle-based modeling scheme presented in [14, 15] by using entropy coding techniques. This scheme encodes the surface geometry and attributes in terms of appropriately ordered oc-tree particles, which can then progressively be decoded and rendered by the-viewer by means of a fast direct triangulation technique. With the introduced entropy coding technique, the bitload of the multi-level representation for geometry encoding reduces to 9-14 bits per particle (or 4.5-7 bits per triangle) for 12-bit quantized geometry.