Research Outputs
Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2
Browse
2145 results
Filters
Advanced Search
Filter by
Settings
Search Results
Publication Metadata only ‘Culture’ in EU–Turkey relations(Ashgate Publishing Ltd, 2011) Department of International Relations; Rumelili, Bahar; İşler, Didem Çakmaklı; Faculty Member; PhD Student; Department of International Relations; College of Administrative Sciences and Economics; Graduate School of Social Sciences and Humanities; 51356; 260783Contemporary socio-political and economic situations in the countries of SEE greatly influence their mutual relationships which are already bearing heavy loads from the past as well as distinct visions of the future. Politicians are forced to change their own priorities, sometimes even decisions, to fit the daily demands of their coalition partners or the expectations of public opinion which are often influenced by populist officials and media. The government and majority representatives condemning crimes committed in Srebrenica approved the decision of the European Parliament. Yugoslav cultural diplomacy was tuned equally toward West and East and also toward countries of the third world. All Balkan countries are open to global cultural flows but, paradoxically, their institutional systems are still closed towards the products of mass culture of neighbouring countries, particularly in the case of ethno-pop or folk music. International dimensions of national cultural policies of the Balkans primarily focus on transferring knowledge, improving the national image and increasing national influence.Publication Metadata only 1.07 - Rubberlike elasticity(Elsevier, 2012) Mark, J.E.; Department of Chemical and Biological Engineering; Erman, Burak; Faculty Member; Department of Chemical and Biological Engineering; College of Engineering; 179997Molecular structure, molecular and phenomenological theories, and computer simulations of amorphous rubberlike polymeric networks of rubber elasticity are discussed. Behavior of responsive gels, multimodal, liquid-crystalline, and reinforced elastomers in the state of thermodynamic equilibrium are outlined. Characterization of structure and properties based on stress–strain experiments, optical and spectroscopic techniques, scanning tunneling microscopy, atomic force microscopy, nuclear magnetic resonance, small-angle and Brillouin scattering, and pulse wave propagation are outlined. © 2012 Elsevier B.V. All rights reserved.Publication Metadata only 10-NJ multipass-cavity femtosecond CR3+: LiCAF laser pumped by low-power single-mode diodes(Optical Society of America, 2009) Kärtner, Franz X.; Fujimoto, James G.; Demirbaş, Ümit; Department of Physics; Sennaroğlu, Alphan; Faculty Member; Department of Physics; College of Sciences; 23851We report on the generation of 9.9-nJ, 95-fs pulses at a repetition rate of 9.58 MHz from a multipass-cavity Cr3+:LiCAF laser pumped by single-mode diodes with a total absorbed pump power of only 540 mW.Publication Metadata only 16.4: the optics of an autostereoscopic multiview display(SID, 2010) Baghsiahi, Hadi; Selviah, David R.; Willman, Eero; Fernández, Anibal; Day, Sally E.; Surman, Phil A.; N/A; Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Erden, Erdem; Chellappan, Kishore Velichappattu; Ürey, Hakan; Master Student; Researcher; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; N/A; 8579An autostereoscopic head-tracked back projection display that uses an RGB laser illumination source and a fast light engine is described. Images are horizontally scanned columns controlled by a spatial light modulator that directs two or more images in the directions of the apposite viewers 'eyes.Publication Open Access 2D hybrid meshes for direct simulation Monte Carlo solvers(Institute of Physics (IOP) Publishing, 2013) Şengil, Nevsan; Department of Mathematics; Şengil, Uluç; Master Student; Department of Mathematics; College of SciencesThe efficiency of the direct simulation Monte Carlo (DSMC) method decreases considerably if gas is not rarefied. In order to extend the application range of the DSMC method towards non-rarefied gas regimes, the computational efficiency of the DSMC method should be increased further. One of the most time consuming parts of the DSMC method is to determine which DSMC molecules are in close proximity. If this information is calculated quickly, the efficiency of the DSMC method will be increased. Although some meshless methods are proposed, mostly structured or non-structured meshes are used to obtain this information. The simplest DSMC solvers are limited with the structured meshes. In these types of solvers, molecule indexing according to the positions can be handled very fast using simple arithmetic operations. But structured meshes are geometry dependent. Complicated geometries require the use of unstructured meshes. In this case, DSMC molecules are traced cell-by-cell. Different cell-by-cell tracing techniques exist. But, these techniques require complicated trigonometric operations or search algorithms. Both techniques are computationally expensive. In this study, a hybrid mesh structure is proposed. Hybrid meshes are both less dependent on the geometry like unstructured meshes and computationally efficient like structured meshes.Publication Metadata only 2D scanning MEMS stage integrated with microlens arrays for high-resolution beam steering(IEEE, 2009) Department of Electrical and Electronics Engineering; N/A; Department of Electrical and Electronics Engineering; N/A; N/A; N/A; Ürey, Hakan; Gökçe, Sertan Kutal; Holmstrom, Sven; Arslan, Aslıhan; Ataman, Çağlar; Seren, Hüseyin Rahmi; Faculty Member; Master Student; Researcher; Master Student; PhD Student; Master Student; Other; Department of Electrical and Electronics Engineering; College of Engineering; Graduate School of Sciences and Engineering; College of Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; N/A; 8579; N/A; N/A; N/A; N/A; N/A; N/AA novel MEMS stage using one set of comb fingers, capable of 2-axis motion is designed and developed. With an integrated 1.1mm square microlens-array it deflects 40um in-plane at 60V and 95um out-of-plane at 100V.Publication Metadata only 3D articulated shape segmentation using motion information(Institute of Electrical and Electronics Engineers (IEEE), 2010) Department of Computer Engineering; N/A; Yemez, Yücel; Kalafatlar, Emre; Faculty Member; Master Student; Department of Computer Engineering; College of Engineering; Graduate School of Sciences and Engineering; 107907; N/AWe present a method for segmentation of articulated 3D shapes by incorporating the motion information obtained from time-varying models. We assume that the articulated shape is given in the form of a mesh sequence with fixed connectivity so that the inter-frame vertex correspondences, hence the vertex movements, are known a priori. We use different postures of an articulated shape in multiple frames to constitute an affinity matrix which encodes both temporal and spatial similarities between surface points. The shape is then decomposed into segments in spectral domain based on the affinity matrix using a standard K-means clustering algorithm. The performance of the proposed segmentation method is demonstrated on the mesh sequence of a human actor.Publication Metadata only 3D face recognition(Institute of Electrical and Electronics Engineers (IEEE), 2006) Dutaǧaci, H.; Sankur, B.; Department of Computer Engineering; Yemez, Yücel; Faculty Member; Department of Computer Engineering; College of Engineering; 107907In this paper, we compare face recognition performances of various features applied on registered 3D scans of faces. The features we compare are DFT or DCT- based features, ICA-based features and NNMF-based features. We apply the feature extraction techniques to three different representations of registered faces: 3D point clouds, 2D depth images and 3D voxel representations. We also consider block-based DFT or DCT-based local features on 2D depth images and their fusion schemes. Experiments using different combinations of representation types and feature vectors are conducted on the 3D-RMA dataset. / Bu bildiride, kayıtlı 3B yüz taramalarında uygulanan çeşitli özelliklerin yüz tanıma performanslarını karşılaştırıyoruz. Karşılaştırdığımız özellikler, DFT veya DCT tabanlı özellikler, ICA tabanlı özellikler ve NNMF tabanlı özelliklerdir. Öznitelik çıkarma tekniklerini kayıtlı yüzlerin üç farklı temsiline uyguluyoruz: 3B nokta bulutları, 2B derinlik görüntüleri ve 3B voksel temsilleri. Ayrıca, 2D derinlik görüntüleri ve bunların füzyon şemaları üzerindeki blok tabanlı DFT veya DCT tabanlı yerel özellikleri de dikkate alıyoruz. 3D-RMA veri seti üzerinde farklı temsil türleri ve özellik vektörleri kombinasyonları kullanılarak deneyler yapılmıştır.Publication Open Access 3D face recognition by projection based methods(Society of Photo-optical Instrumentation Engineers (SPIE), 2006) Dutaǧaci, Helin; Sankur, Bülent; Department of Computer Engineering; Yemez, Yücel; Faculty Member; Department of Computer Engineering; College of EngineeringIn this paper, we investigate recognition performances of various projection-based features applied on registered 3D scans of faces. Some features are data driven, such as ICA-based features or NNMF-based features. Other features are obtained using DFT or DCT-based schemes. We apply the feature extraction techniques to three different representations of registered faces, namely, 3D point clouds, 2D depth images and 3D voxel. We consider both global and local features. Global features are extracted from the whole face data, whereas local features are computed over the blocks partitioned from 2D depth images. The block-based local features are fused both at feature level and at decision level. The resulting feature vectors are matched using Linear Discriminant Analysis. Experiments using different combinations of representation types and feature vectors are conducted on the 3D-RMA dataset.Publication Metadata only 3D isometric shape correspondence(IEEE, 2010) Department of Computer Engineering; Yemez, Yücel; Sahillioğlu, Yusuf; Faculty Member; PhD Student; Department of Computer Engineering; College of Engineering; Graduate School of Sciences and Engineering; 107907; 215195We address the problem of correspondence between 3D isometric shapes. We present an automatic method that finds the optimal correspondence between two given (nearly) isometric shapes by minimizing the amount of deviation from isometry. We optimize the isometry error in two steps. In the first step, the 3D points uniformly sampled from the shape surfaces are transformed into spectral domain based on geodesic affinity, where the isometry errors are minimized in polynomial time by complete bipartite graph matching. The second step of optimization, which is well-initialized by the resulting correspondence of the first step, explicitly minimizes the isometry cost via an iterative greedy algorithm in the original 3D Euclidean space. Our method is put to test using (nearly) isometric pairs of shapes and its performance is measured via ground-truth correspondence information when available.