Research Outputs
Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2
Browse
283 results
Search Results
Publication Open Access 3D bioprinted organ?on?chips(Wiley, 2022) Mustafaoğlu, Nur; Zhang, Yu Shrike; Department of Mechanical Engineering; N/A; N/A; Dabbagh, Sajjad Rahmani; Sarabi, Misagh Rezapour; Birtek, Mehmet Tuğrul; Taşoğlu, Savaş; Faculty Member; Department of Mechanical Engineering; KU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR); Koç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI); College of Engineering; Graduate School of Social Sciences and Humanities; Graduate School of Sciences and Engineering; N/A; N/A; N/A; 291971Organ-on-a-chip (OOC) platforms recapitulate human in vivo-like conditions more realistically compared to many animal models and conventional two-dimensional cell cultures. OOC setups benefit from continuous perfusion of cell cultures through microfluidic channels, which promotes cell viability and activities. Moreover, microfluidic chips allow the integration of biosensors for real-time monitoring and analysis of cell interactions and responses to administered drugs. Three-dimensional (3D) bioprinting enables the fabrication of multicell OOC platforms with sophisticated 3D structures that more closely mimic human tissues. 3D-bioprinted OOC platforms are promising tools for understanding the functions of organs, disruptive influences of diseases on organ functionality, and screening the efficacy as well as toxicity of drugs on organs. Here, common 3D bioprinting techniques, advantages, and limitations of each method are reviewed. Additionally, recent advances, applications, and potentials of 3D-bioprinted OOC platforms for emulating various human organs are presented. Last, current challenges and future perspectives of OOC platforms are discussed.Publication Metadata only 3D printed styrax liquidus (liquidambar orientalis miller)-loaded poly (l-lactic acid)/chitosan based wound dressing material: fabrication, characterization, and biocompatibility results(Elsevier, 2023) Cakmak, Hanife Yuksel; Ege, Hasan; Yilmaz, Senanur; Agturk, Gokhan; Enguven, Gozde; Sarmis, Abdurrahman; Cakmak, Zeren; Gunduz, Oguzhan; Ege, Zeynep Ruya; Yöntem, Fulya Dal; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); School of MedicineThe medicinal plant of Styrax liquidus (ST) (sweet gum balsam) which extracted from Liquidambar orientalis Mill tree, was loaded into the 3D printed polylactic acid (PLA)/chitosan (CS) based 3D printed scaffolds to investigate its wound healing and closure effect, in this study. The morphological and chemical properties of the ST loaded 3D printed scaffolds with different concentrations (1 %, 2 %, and 3 % wt) were investigated by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FT-IR), respectively. In addition, the me-chanical and thermal properties of the materials were investigated by Tensile test and Differential Scanning Calorimetry (DSC), respectively. The antimicrobial activities of the ST loaded 3D printed scaffolds and their incubation media in the PBS (pH 7.4, at 37 degrees C for 24 h) were investigated on two Gram-positive and two Gram -negative standard pathogenic bacteria with the agar disc diffusion method. The colorimetric MTT assay was used to determine the cell viability of human fibroblast cells (CCD-1072Sk) incubated with free ST, ST loaded, and unloaded 3D printed scaffolds. The 1 % and 2 % (wt) ST loaded PLA/CS/ST 3D printed scaffolds showed an increase in the cell number. Annexin V/PI double stain assay was performed to test whether early or late apoptosis was induced in the PLA/CS/1 % ST and PLA/CS/2 % ST loaded groups and the results were consistent with the MTT assay. Furthermore, a wound healing assay was carried out to investigate the effect of ST loaded 3D printed scaffolds on wound healing in CCD-1072Sk cells. The highest wound closure compared to the control group was observed on cells treated with PLA/CS/1 % ST for 72 h. According to the results, novel biocompatible ST loaded 3D printed scaffolds with antimicrobial effect can be used as wound healing material for potential tissue engineering applications.Publication Open Access 3D printing of elastomeric bioinspired complex adhesive microstructures(Wiley, 2021) Dayan, Cem Balda; Chun, Sungwoo; Krishna Subbaiah, Nagaraj; Drotlef, Dirk Michael; Akolpoğlu, Mükrime Birgül; Department of Mechanical Engineering; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; College of Engineering; School of Medicine; 297104Bioinspired elastomeric structural adhesives can provide reversible and controllable adhesion on dry/wet and synthetic/biological surfaces for a broad range of commercial applications. Shape complexity and performance of the existing structural adhesives are limited by the used specific fabrication technique, such as molding. To overcome these limitations by proposing complex 3D microstructured adhesive designs, a 3D elastomeric microstructure fabrication approach is implemented using two-photon-polymerization-based 3D printing. A custom aliphatic urethane-acrylate-based elastomer is used as the 3D printing material. Two designs are demonstrated with two combined biological inspirations to show the advanced capabilities enabled by the proposed fabrication approach and custom elastomer. The first design focuses on springtail- and gecko-inspired hybrid microfiber adhesive, which has the multifunctionalities of side-surface liquid super-repellency, top-surface liquid super-repellency, and strong reversible adhesion features in a single fiber array. The second design primarily centers on octopus- and gecko-inspired hybrid adhesive, which exhibits the benefits of both octopus- and gecko-inspired microstructured adhesives for strong reversible adhesion on both wet and dry surfaces, such as skin. This fabrication approach could be used to produce many other 3D complex elastomeric structural adhesives for future real-world applications.Publication Metadata only A detailed investigation of the effect of calcium crosslinking and glycerol plasticizing on the physical properties of alginate films(Elsevier, 2020) Berberoglu, Melisa; Bener, Semira; Aydelik-Ayazoglu, Sena; Bayraktar, Halil; Catalgil-Giz, Huceste; Department of Mechanical Engineering; Alaca, Burhanettin Erdem; Giz, Ayşe Su; Faculty Member; Master Student; Department of Mechanical Engineering; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); College of Engineering; Graduate School of Sciences and Engineering; 115108; N/AAlginates attract growing interest due to their biocompatible and biodegradable nature. Here, a wide spectrum of glycerol added alginate films (from 0 to 30% w/w, glycerol/alginate) were prepared and crosslinked by four different concentrations of calcium chloride solutions (0.5, 1, 1.5, 2%, w/w). This is the first investigation involving variation of both the plasticizer and crosslinker concentrations in twenty different compositions. It is shown that glycerol and calcium have a synergic effect on the mechanical properties and the behavior of crosslinked and plasticized alginate films cannot be predicted by studies, which vary only one of these, keeping the other constant. Without glycerol, crosslinking had a negligible effect on tensile behavior, but with glycerol addition, the effect of crosslinking became evident in mechanical properties. Calcium and glycerol concentrations exhibited a combined effect, displaying optimum combinations with good strength and fracture strain properties. Crosslinking increased the thermal resistance of all films. Low crosslinked high swelling films and highly crosslinked low swelling films were prepared. Water vapor permeability of films decreased regularly with increasing calcium concentration. The films exhibited high transmittance in the visible region. The results showed that alginate films have an appreciable potential in wound dressing and food packaging applications. (C) 2020 Elsevier B.V. All rights reserved.Publication Open Access A diversity combination model incorporating an inward bias for interaural time-level difference cue integration in sound lateralization(Multidisciplinary Digital Publishing Institute (MDPI), 2020) N/A; Department of Computer Engineering; Mojtahedi, Sina; Erzin, Engin; Ungan, Pekcan; Faculty Member; Faculty Member; Department of Computer Engineering; Graduate School of Sciences and Engineering; College of Engineering; School of Medicine; N/A; 34503; N/AA sound source with non-zero azimuth leads to interaural time level differences (ITD and ILD). Studies on hearing system imply that these cues are encoded in different parts of the brain, but combined to produce a single lateralization percept as evidenced by experiments indicating trading between them. According to the duplex theory of sound lateralization, ITD and ILD play a more significant role in low-frequency and high-frequency stimulations, respectively. In this study, ITD and ILD, which were extracted from a generic head-related transfer functions, were imposed on a complex sound consisting of two low- and seven high-frequency tones. Two-alternative forced-choice behavioral tests were employed to assess the accuracy in identifying a change in lateralization. Based on a diversity combination model and using the error rate data obtained from the tests, the weights of the ITD and ILD cues in their integration were determined by incorporating a bias observed for inward shifts. The weights of the two cues were found to change with the azimuth of the sound source. While the ILD appears to be the optimal cue for the azimuths near the midline, the ITD and ILD weights turn to be balanced for the azimuths far from the midline.Publication Metadata only A diversity combination model incorporating an inward bias for interaural time-level difference cue integration in sound lateralization(MDPI, 2020) N/A; N/A; Department of Computer Engineering; N/A; Mojtahedi, Sina; Erzin, Engin; Ungan, Pekcan; PhD Student; Faculty Member; Faculty Member; Department of Computer Engineering; Graduate School of Sciences and Engineering; College of Engineering; School of Medicine; N/A; 34503; N/AA sound source with non-zero azimuth leads to interaural time level differences (ITD and ILD). Studies on hearing system imply that these cues are encoded in different parts of the brain, but combined to produce a single lateralization percept as evidenced by experiments indicating trading between them. According to the duplex theory of sound lateralization, ITD and ILD play a more significant role in low-frequency and high-frequency stimulations, respectively. In this study, ITD and ILD, which were extracted from a generic head-related transfer functions, were imposed on a complex sound consisting of two low- and seven high-frequency tones. Two-alternative forced-choice behavioral tests were employed to assess the accuracy in identifying a change in lateralization. Based on a diversity combination model and using the error rate data obtained from the tests, the weights of the ITD and ILD cues in their integration were determined by incorporating a bias observed for inward shifts. The weights of the two cues were found to change with the azimuth of the sound source. While the ILD appears to be the optimal cue for the azimuths near the midline, the ITD and ILD weights turn to be balanced for the azimuths far from the midline.Publication Metadata only A facile synthesis of mesoporous graphitic carbon nitride supported palladium nanoparticles as highly effective and reusable catalysts for Stille coupling reactions under mild conditions(Royal Soc Chemistry, 2020) N/A; Department of Chemistry; N/A; Department of Chemistry; Department of Chemistry; Kalay, Erbay; Çetin, Sultan; Kölemen, Safacan; Metin, Önder; Researcher; PhD Student; Faculty Member; Faculty Member; Department of Chemistry; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); College of Sciences; Graduate School of Sciences and Engineering; College of Sciences; College of Sciences; 59456; N/A; 272051; 46962The development of a Stille coupling protocol that is operable under moderate conditions without using a base is highly required for the synthetic organic chemistry community, which requires an efficient nanocatalyst. In this respect, addressed herein is a facile one-pot synthesis of mesoporous graphitic carbon nitride (mpg-CN) supported Pd NPs, denoted as mpg-CN/Pd hereafter, and investigation of their catalytic activity in Stille cross-coupling reactions for the first time. It has been demonstrated that mpg-CN nanosheets can serve as not only a support material but also a stabilizer for the generation of 4.5 nm Pd NPs. The ecofriendly generated heterogeneous nanocatalyst was characterized by TEM, XRD, XPS, BET surface area and ICP-MS analysis. The mpg-CN/Pd nanocatalysts showed high activity in the Stille coupling reaction of a variety of electron-deficient and electron-rich aryl iodides/bromides and two different organostannanes with a wide substrate scope to afford the corresponding biaryls without using any bases and additional ligands under relatively mild conditions. The catalyst can be easily recovered from the reaction medium by centrifugation. It can be reused at least 5 times without any loss of activity.Publication Metadata only A facile synthesis of monodisperse cobalt–ruthenium alloy nanoparticles as catalysts for the dehydrogenation of morpholine borane and the hydrogenation of various organic compounds(Royal Soc Chemistry, 2022) Can, Hasan; Can, Sumeyra; Ebiri, Rustem; Department of Chemistry; Metin, Önder; Faculty Member; Department of Chemistry; College of Sciences; 46962Herein we report a novel wet-chemical protocol for the composition-controlled synthesis of monodisperse cobalt-ruthenium (CoRu) alloy NPs and their catalysis in the hydrolytic dehydrogenation of morpholine borane (MB) for chemical hydrogen storage and the hydrogenation of various organic compounds using MB as a hydrogen source. Monodisperse CoRu NPs with an average particle size of 1.7 +/- 0.6 nm at three different alloy compositions were prepared by the presented novel protocol that comprises the reduction of in situ formed ruthenium(iii) oleate complex with dicobalt octacarbonyl (Co-2(CO)(8)) in the presence of oleylamine (OAm). Next, as-synthesized CoRu alloy NPs were supported on carbon black (VC) and reduced graphene oxide (rGO) to study their catalysis in the dehydrogenation of MB and the transfer hydrogenation of various organic compouns bearing unsaturated functional groups (nitro, nitrile and carbonyl) using MB as a hydrogen source, respectively. VC-CoRu nanocatalysts exhibited a higher catalytic activity in hydrogen generation from the hydrolysis of MB with an initial turnover frequency (TOF) of 95 mol H-2*(mol (Co + Ru) min)(-1) while rGO-CoRu nanocatalysts showed better catalytic performance in the transfer hydrogenation reactions. All tested unsatured organic compounds (30 examples in total) are converted into corresponding hydrogenated products with the yields reaching up to 99% under mild conditions.Publication Metadata only A genome-wide functional screen identifies enhancer and protective genes for amyloid beta-peptide toxicity(Multidisciplinary Digital Publishing Institute (MDPI), 2023) Picon-Pages, Pol; Bosch-Morato, Monica; Subirana, Laia; Rubio-Moscardo, Francisca; Guivernau, Biuse; Fanlo-Ucar, Hugo; Herrera-Fernandez, Victor; Vicente, Ruben; Fernandez-Fernandez, Jose M.; Garcia-Ojalvo, Jordi; Oliva, Baldomero; Posas, Francesc; de Nadal, Eulalia; Munoz, Francisco J.; N/A; N/A; N/A; Department of Computer Engineering; Department of Computer Engineering; Zeylan, Melisa Ece; Şenyüz, Simge; Gürsoy, Attila; Keskin, Özlem; PhD Student; Master Student; Faculty Member; Faculty Member; Department of Computer Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; N/A; 8745; 26605Alzheimer's disease (AD) is known to be caused by amyloid beta-peptide (A beta) misfolded into beta-sheets, but this knowledge has not yet led to treatments to prevent AD. To identify novel molecular players in A beta toxicity, we carried out a genome-wide screen in Saccharomyces cerevisiae, using a library of 5154 gene knock-out strains expressing A beta(1-42). We identified 81 mammalian orthologue genes that enhance A beta(1-42) toxicity, while 157 were protective. Next, we performed interactome and text-mining studies to increase the number of genes and to identify the main cellular functions affected by A beta oligomers (oA beta). We found that the most affected cellular functions were calcium regulation, protein translation and mitochondrial activity. We focused on SURF4, a protein that regulates the store-operated calcium channel (SOCE). An in vitro analysis using human neuroblastoma cells showed that SURF4 silencing induced higher intracellular calcium levels, while its overexpression decreased calcium entry. Furthermore, SURF4 silencing produced a significant reduction in cell death when cells were challenged with oA beta(1-42), whereas SURF4 overexpression induced A beta(1-42) cytotoxicity. In summary, we identified new enhancer and protective activities for A beta toxicity and showed that SURF4 contributes to oA beta(1-42) neurotoxicity by decreasing SOCE activity.Publication Metadata only A leucine aminopeptidase activatable photosensitizer for cancer cell selective photodynamic therapy action(Elsevier Sci Ltd, 2021) N/A; N/A; N/A; Department of Chemistry; N/A; Department of Physics; Department of Chemistry; Department of Chemistry; Arslan, Büşra; Bilici, Kübra; Demirci, Gözde; Almammadov, Toghrul; Khan, Minahil; Sennaroğlu, Alphan; Acar, Havva Funda Yağcı; Kölemen, Safacan; Master Student; PhD Student; Master Student; Researcher; PhD Student; Faculty Member; Faculty Member; Faculty Member; Department of Physics; Department of Chemistry; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Koç University Boron and Advanced Materials Application and Research Center (KUBAM) / Koç Üniversitesi Bor ve İleri Malzemeler Uygulama ve Araştırma Merkezi (KUBAM); Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Sciences; Graduate School of Sciences and Engineering; College of Sciences; College of Sciences; College of Sciences; N/A; N/A; N/A; N/A; N/A; 23851; 178902; 272051Activity based photosensitizers (PS) continue to attract great attention as they enable selective photodynamic therapy action on cancer cells while sparing normal cells even under light irradiation. Sensitivity to specific enzymes that are differentially overexpressed in cancer cells is crucial in the design of activatable PSs. In this direction, we report here, for the first time, a leucine aminopeptidase (LAP) activatable PDT agent (HCL), which is a red-shifted, water soluble and photostable brominated hemicyanine derivative. HCL was activated by endogenous LAP enzyme selectively in A549 (lung) and HCT116 (colon) cancer cells containing high LAP levels and induced effective photocytotoxicity with negligible dark toxicity. Furthermore, the fluorescence of the parent bromo-hemicyanine core was restored upon LAP-based activation in cancer cells. On the other side, no remarkable phototoxicity or fluorescence turn-on was detected in healthy L929 cells. Thus, HCL serves as an effective and tumour associated LAP-sensitive phototheranostic agent. We believe different cancer-associated analytes can be utilized in combination with near-IR absorbing scaffolds in the scope of activatable PDT designs to enrich the tumour-selective PS arsenal.