Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 3 of 3
  • Placeholder
    Publication
    Advances in template-based protein docking by utilizing interfaces towards completing structural interactome
    (Current Biology Ltd, 2015) N/A; N/A; N/A; Department of Chemical and Biological Engineering; Department of Computer Engineering; Muratçıoğlu, Serena; Maiorov, Emine Güven; Keskin, Özlem; Gürsoy, Attila; PhD Student; PhD Student; Faculty Member; Faculty Member; Department of Chemical and Biological Engineering; Department of Computer Engineering; The Center for Computational Biology and Bioinformatics (CCBB); Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; N/A; 26605; 8745
    The increase in the number of structurally determined protein complexes strengthens template-based docking (TBD) methods for modelling protein-protein interactions (PPIs). These methods utilize the known structures of protein complexes as templates to predict the quaternary structure of the target proteins. The templates may be partial or complete structures. Interface based (partial) methods have recently gained interest due in part to the observation that the interface regions are reusable. We describe how available template interfaces can be used to obtain the structural models of protein interactions. Despite the agreement that a majority of the protein complexes can be modelled using the available Protein Data Bank (PDB) structures, a handful of studies argue that we need more template proteins to increase the structural coverage of PPIs. We also discuss the performance of the interface TBD methods at large scale, and the significance of capturing multiple conformations for improving accuracy.
  • Thumbnail Image
    PublicationOpen Access
    Androgen receptor-mediated transcription in prostate cancer
    (Multidisciplinary Digital Publishing Institute (MDPI), 2022) Morova, Tunç; Department of Computer Engineering; Department of Chemical and Biological Engineering; Lack, Nathan Alan; Özturan, Doğancan; Faculty Member; PhD Student; Department of Computer Engineering; Department of Chemical and Biological Engineering; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); School of Medicine; 120842; N/A
    Androgen receptor (AR)-mediated transcription is critical in almost all stages of prostate cancer (PCa) growth and differentiation. This process involves a complex interplay of coregulatory proteins, chromatin remodeling complexes, and other transcription factors that work with AR at cis-regulatory enhancer regions to induce the spatiotemporal transcription of target genes. This enhancer-driven mechanism is remarkably dynamic and undergoes significant alterations during PCa progression. In this review, we discuss the AR mechanism of action in PCa with a focus on how cis-regulatory elements modulate gene expression. We explore emerging evidence of genetic variants that can impact AR regulatory regions and alter gene transcription in PCa. Finally, we highlight several outstanding questions and discuss potential mechanisms of this critical transcription factor.
  • Placeholder
    Publication
    Comparative biological network analysis for differentially expressed proteins as a function of bacilysin biosynthesis in Bacillus subtilis
    (2022) Kutnu, Meltem; İşlerel, Elif Tekin; Özcengiz, Gülay; Department of Chemical and Biological Engineering; Tunçbağ, Nurcan; Faculty Member; Department of Chemical and Biological Engineering; College of Engineering; 245513
    The Gram-positive bacterium Bacillus subtilis produces a diverse range of secondary metabolites with different structures and activities. Among them, bacilysin is an enzymatically synthesized dipeptide that consists of L-alanine and L-anticapsin. Previous research by our group has suggested bacilysin’s role as a pleiotropic molecule in its producer, B. subtilis PY79. However, the nature of protein interactions in the absence of bacilysin has not been defined. In the present work, we constructed a protein–protein interaction subnetwork by using Omics Integrator based on our recent comparative proteomics data obtained from a bacilysin-silenced strain, OGU1. Functional enrichment analyses on the resulting networks pointed to certain putatively perturbed pathways such as citrate cycle, quorum sensing and secondary metabolite biosynthesis. Various molecules, which were absent from the experimental data, were included in the final network. We believe that this study can guide further experiments in the identification and confirmation of protein–protein interactions in B. subtilis.