Research Outputs
Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2
Browse
2 results
Search Results
Publication Metadata only Advances in template-based protein docking by utilizing interfaces towards completing structural interactome(Current Biology Ltd, 2015) N/A; N/A; N/A; Department of Chemical and Biological Engineering; Department of Computer Engineering; Muratçıoğlu, Serena; Maiorov, Emine Güven; Keskin, Özlem; Gürsoy, Attila; PhD Student; PhD Student; Faculty Member; Faculty Member; Department of Chemical and Biological Engineering; Department of Computer Engineering; The Center for Computational Biology and Bioinformatics (CCBB); Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; N/A; 26605; 8745The increase in the number of structurally determined protein complexes strengthens template-based docking (TBD) methods for modelling protein-protein interactions (PPIs). These methods utilize the known structures of protein complexes as templates to predict the quaternary structure of the target proteins. The templates may be partial or complete structures. Interface based (partial) methods have recently gained interest due in part to the observation that the interface regions are reusable. We describe how available template interfaces can be used to obtain the structural models of protein interactions. Despite the agreement that a majority of the protein complexes can be modelled using the available Protein Data Bank (PDB) structures, a handful of studies argue that we need more template proteins to increase the structural coverage of PPIs. We also discuss the performance of the interface TBD methods at large scale, and the significance of capturing multiple conformations for improving accuracy.Publication Open Access Androgen receptor-mediated transcription in prostate cancer(Multidisciplinary Digital Publishing Institute (MDPI), 2022) Morova, Tunç; Department of Computer Engineering; Department of Chemical and Biological Engineering; Lack, Nathan Alan; Özturan, Doğancan; Faculty Member; PhD Student; Department of Computer Engineering; Department of Chemical and Biological Engineering; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); School of Medicine; 120842; N/AAndrogen receptor (AR)-mediated transcription is critical in almost all stages of prostate cancer (PCa) growth and differentiation. This process involves a complex interplay of coregulatory proteins, chromatin remodeling complexes, and other transcription factors that work with AR at cis-regulatory enhancer regions to induce the spatiotemporal transcription of target genes. This enhancer-driven mechanism is remarkably dynamic and undergoes significant alterations during PCa progression. In this review, we discuss the AR mechanism of action in PCa with a focus on how cis-regulatory elements modulate gene expression. We explore emerging evidence of genetic variants that can impact AR regulatory regions and alter gene transcription in PCa. Finally, we highlight several outstanding questions and discuss potential mechanisms of this critical transcription factor.