Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 7 of 7
  • Thumbnail Image
    PublicationOpen Access
    A wearable paper-integrated microfluidic device for sequential analysis of sweat based on capillary action
    (Royal Society of Chemistry (RSC), 2022) Koydemir, Hatice Ceylan; Department of Mechanical Engineering; Department of Electrical and Electronics Engineering; Beker, Levent; Abbasiasl, Taher; Mirlou, Fariborz; İstif, Emin; Faculty Member; Department of Mechanical Engineering; Department of Electrical and Electronics Engineering; College of Engineering; Graduate School of Sciences and Engineering; 308798; N/A; N/A; N/A
    Soft, skin-mounted microfluidic devices can collect microliter volumes of eccrine sweat and are capable of in situ real-time analysis of different biomarkers to assess physiological state and health. Chrono-analysis of sweat can be implemented to monitor temporal variations of biomarker concentrations over a certain period of interest. Conventional methods used to capture sweat or some of the newly developed microfluidic platforms for sweat collection and analysis are based on absorbent pads. They suffer from evaporation, leading to considerable deviations in the concentration of the biomarkers. Here, a paperintegrated microfluidic device is presented for sequential analysis of sweat that is easy to fabricate and does not include air exits for each reservoir, which reduces undesirable effects of sweat evaporation. Furthermore, the high capillary force of filter paper is leveraged to route the liquid into the chambers in a sequential fashion and allow further chemical analysis. The employed design of the paper-embedded microfluidic device successfully samples and analyzes artificial sweat sequentially for flow rates up to 5 ?L min?1 without showing any leakage. We demonstrated the performance of the device, employing colorimetric assays for chrono-analysis of glucose standard solutions at concentrations in the range of 10– 100 mM and pH of sweat during exercise. The results reveal the presented approach's functionality and potential to analyze the concentration of biomarkers over a certain period sequentially.
  • Thumbnail Image
    PublicationOpen Access
    Artificial eye model and holographic display based IOL simulator
    (Society of Photo-optical Instrumentation Engineers (SPIE), 2023) N/A; Department of Electrical and Electronics Engineering; N/A; Şahin, Afsun; Ürey, Hakan; Aygün, Uğur; Kavaklı, Koray; Akyazı, Deniz; Faculty Member; Faculty Member; Department of Electrical and Electronics Engineering; School of Medicine; College of Engineering; Graduate School of Sciences and Engineering; 171267; 8579; N/A; N/A; N/A
    Cataract is a common ophthalmic disease in which a cloudy area is formed in the lens of the eye and requires surgical removal and replacement of eye lens. Careful selection of the intraocular lens (IOL) is critical for the post-surgery satisfaction of the patient. Although there are various types of IOLs in the market with different properties, it is challenging for the patient to imagine how they will perceive the world after the surgery. We propose a novel holographic vision simulator which utilizes non-cataractous regions on eye lens to allow the cataract patients to experience post-operative visual acuity before surgery. Computer generated holography display technology enables to shape and steer the light beam through the relatively clear areas of the patient’s lens. Another challenge for cataract surgeries is to match the right patient with the right IOL. To evaluate various IOLs, we developed an artificial human eye composed of a scleral lens, a glass retina, an iris, and a replaceable IOL holder. Next, we tested different IOLs (monofocal and multifocal) by capturing real-world scenes to demonstrate visual artifacts. Then, the artificial eye was implemented in the benchtop holographic simulator to evaluate various IOLs using different light sources and holographic contents.
  • Thumbnail Image
    PublicationOpen Access
    Cluster index modulation for mmWave communication systems
    (Frontiers, 2022) Koç, Asil; Le-Ngoc, Tho; Department of Electrical and Electronics Engineering; Başar, Ertuğrul; Raeisi, Mahmoud; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; Graduate School of Sciences and Engineering; 149116; N/A
    In this study, a novel cluster index modulation (CIM) scheme, which is based on indexing the available clusters in the environment, is proposed for future mmWave communication systems. Exploiting the fact that the available clusters in the system are well separated in terms of their angular distribution, we selected the best path for each of them and then performed IM in an algorithmic manner to convey information bits. It is shown that by means of large antenna arrays and analog RF beamforming with the indexed clusters, the destructive effect of inter-beam/cluster interference can be remarkably mitigated. Also, we designed a hybrid beamforming architecture at the transmitter to further reduce the effect of residual inter-beam/cluster interference, where the analog RF beamformer is followed by a digital baseband precoder using the zero-forcing technique. Computer simulations reveal that the proposed scheme can provide better error performance than traditional mmWave communication, and the proposed hybrid architecture outperforms beam index modulation (BIM) for a point-to-point scenario. Semi-analytical derivations and closedform unconditional pairwise error probability (UPEP) expressions are derived for both analog and hybrid architectures, which confirm the validity and superiority of our proposed scheme.
  • Thumbnail Image
    PublicationOpen Access
    Dynamic accommodation measurement using Purkinje reflections and ML algorithms
    (Society of Photo-optical Instrumentation Engineers (SPIE), 2023) Department of Electrical and Electronics Engineering; N/A; Aygün, Uğur; Şahin, Afsun; Ürey, Hakan; Faculty Member; Faculty Member; Department of Electrical and Electronics Engineering; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); College of Engineering; School of Medicine; N/A; N/A; N/A; 171267; 8579
    We developed a prototype device for dynamic gaze and accommodation measurements based on 4 Purkinje reflections (PR) suitable for use in AR and ophthalmology applications. PR1&2 and PR3&4 are used for accurate gaze and accommodation measurements, respectively. Our eye-model was developed in Zemax and matches the experiments well. Our model predicts the accommodation from 25cm to infinity (<4 diopters) with better than 0,25D accuracy. We performed repeatability tests and obtained accurate gaze and accommodation estimations using 15 subjects. We are generating a large synthetic data set using physically accurate models and machine learning algorithms.
  • Thumbnail Image
    PublicationOpen Access
    Mitigating edge fringe effects in multiplane holography
    (Society of Photo-optical Instrumentation Engineers (SPIE), 2023) Akşit, Kaan; Itoh, Yuta; Department of Electrical and Electronics Engineering; Kavaklı, Koray; Ürey, Hakan; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; N/A; 8579
    This poster presentation was prepared for the Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR) IV Conference at the SPIE AR | VR | MR 2023 Symposium.
  • Thumbnail Image
    PublicationOpen Access
    Universal transceivers: opportunities and future directions for the Internet of Everything (IoE)
    (Frontiers, 2021) Department of Electrical and Electronics Engineering; Kuşcu, Murat; Civaş, Meltem; Çetinkaya, Oktay; Akan, Özgür Barış; Researcher; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; Graduate School of Sciences and Engineering; 316349; N/A; N/A; 6647
    The Internet of Everything (IoE) is a recently introduced information and communication technology (ICT) framework promising for extending the human connectivity to the entire universe, which itself can be regarded as a natural IoE, an interconnected network of everything we perceive. The countless number of opportunities that can be enabled by IoE through a blend of heterogeneous ICT technologies across different scales and environments and a seamless interface with the natural IoE impose several fundamental challenges, such as interoperability, ubiquitous connectivity, energy efficiency, and miniaturization. The key to address these challenges is to advance our communication technology to match the multi-scale, multi-modal, and dynamic features of the natural IoE. To this end, we introduce a new communication device concept, namely the universal IoE transceiver, that encompasses transceiver architectures that are characterized by multi-modality in communication (with modalities such as molecular, RF/THz, optical and acoustic) and in energy harvesting (with modalities such as mechanical, solar, biochemical), modularity, tunability, and scalability. Focusing on these fundamental traits, we provide an overview of the opportunities that can be opened up by micro/nanoscale universal transceiver architectures towards realizing the IoE applications. We also discuss the most pressing challenges in implementing such transceivers and briefly review the open research directions. Our discussion is particularly focused on the opportunities and challenges pertaining to the IoE physical layer, which can enable the efficient and effective design of higher-level techniques. We believe that such universal transceivers can pave the way for seamless connection and communication with the universe at a deeper level and pioneer the construction of the forthcoming IoE landscape.
  • Thumbnail Image
    PublicationOpen Access
    Wearable multi-color RAPD screening device
    (Society of Photo-optical Instrumentation Engineers (SPIE), 2023) Department of Electrical and Electronics Engineering; Aygün, Uğur; Şahin, Afsun; Ürey, Hakan; Hasanreisoğlu, Murat; Kavaklı, Koray; Küçüködük, Abdullah; Faculty Member; Faculty Member; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; School of Medicine; Koç University Hospital; N/A; N/A; 171267; 8579; 182001; N/A; N/A; N/A; N/A; N/A
    In this work, we developed a wearable, head-mounted device that automatically calculates the precise Relative Afferent Pupillary Defect (RAPD) value of a patient. The device consists of two RGB LEDs, two infrared cameras, and one microcontroller. In the RAPD test, the parameters like LED on-off durations, brightness level, and color of the light can be controlled by the user. Upon data acquisition, a computational unit processes the data, calculates the RAPD score and visualizes the test results with a user-friendly interface. Multiprocessing methods used on GUI to optimize the processing pipeline. We have shown that our head-worn instrument is easy to use, fast, and suitable for early-diagnostics and screening purposes for various neurological conditions such as RAPD, glaucoma, asymmetric glaucoma, and anisocoria.