Research Outputs
Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2
Browse
3 results
Search Results
Publication Metadata only A kernel-based multilayer perceptron framework to identify pathways related to cancer stages(Springer Science and Business Media Deutschland GmbH, 2023) Mokhtaridoost, Milad; N/A; Department of Industrial Engineering; Soleimanpoor, Marzieh; Gönen, Mehmet; PhD Student; Faculty Member; Department of Industrial Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 237468Standard machine learning algorithms have limited knowledge extraction capability in discriminating cancer stages based on genomic characterizations, due to the strongly correlated nature of high-dimensional genomic data. Moreover, activation of pathways plays a crucial role in the growth and progression of cancer from early-stage to late-stage. That is why we implemented a kernel-based neural network framework that integrates pathways and gene expression data using multiple kernels and discriminates early- and late-stages of cancers. Our goal is to identify the relevant molecular mechanisms of the biological processes which might be driving cancer progression. As the input of developed multilayer perceptron (MLP), we constructed kernel matrices on multiple views of expression profiles of primary tumors extracted from pathways. We used Hallmark and Pathway Interaction Database (PID) datasets to restrict the search area to interpretable solutions. We applied our algorithm to 12 cancer cohorts from the Cancer Genome Atlas (TCGA), including more than 5100 primary tumors. The results showed that our algorithm could extract meaningful and disease-specific mechanisms of cancers. We tested the predictive performance of our MLP algorithm and compared it against three existing classification algorithms, namely, random forests, support vector machines, and multiple kernel learning. Our MLP method obtained better or comparable predictive performance against these algorithms.Publication Open Access PrognosiT: pathway/gene set-based tumour volume prediction using multiple kernel learning(BioMed Central, 2021) Department of Industrial Engineering; N/A; Gönen, Mehmet; Bektaş, Ayyüce Begüm; Faculty Member; Department of Industrial Engineering; School of Medicine; College of Engineering; Graduate School of Sciences and Engineering; 237468; N/ABackground: identification of molecular mechanisms that determine tumour progression in cancer patients is a prerequisite for developing new disease treatment guidelines. Even though the predictive performance of current machine learning models is promising, extracting significant and meaningful knowledge from the data simultaneously during the learning process is a difficult task considering the high-dimensional and highly correlated nature of genomic datasets. Thus, there is a need for models that not only predict tumour volume from gene expression data of patients but also use prior information coming from pathway/gene sets during the learning process, to distinguish molecular mechanisms which play crucial role in tumour progression and therefore, disease prognosis. Results: in this study, instead of initially choosing several pathways/gene sets from an available set and training a model on this previously chosen subset of genomic features, we built a novel machine learning algorithm, PrognosiT, that accomplishes both tasks together. We tested our algorithm on thyroid carcinoma patients using gene expression profiles and cancer-specific pathways/gene sets. Predictive performance of our novel multiple kernel learning algorithm (PrognosiT) was comparable or even better than random forest (RF) and support vector regression (SVR). It is also notable that, to predict tumour volume, PrognosiT used gene expression features less than one-tenth of what RF and SVR algorithms used. Conclusions: PrognosiT was able to obtain comparable or even better predictive performance than SVR and RF. Moreover, we demonstrated that during the learning process, our algorithm managed to extract relevant and meaningful pathway/gene sets information related to the studied cancer type, which provides insights about its progression and aggressiveness. We also compared gene expressions of the selected genes by our algorithm in tumour and normal tissues, and we then discussed up- and down-regulated genes selected by our algorithm while learning, which could be beneficial for determining new biomarkers.Publication Open Access Recent advances in operations research in computational biology, bioinformatics and medicine(EDP Sciences, 2014) Felici, Giovanni; Szachniuk, Marta; Lukasiak, Piotr; Department of Industrial Engineering; Türkay, Metin; Faculty Member; Department of Industrial Engineering; College of Engineering; 24956The EURO Working Group on Operations Research in Computational Biology, Bioinformatics and Medicine held its fourth conference in Poznan-Biedrusko, Poland, June 26-28, 2014. The editorial board of RAIRO-OR invited submissions of papers to a special issue on Recent Advances in Operations Research in Computational Biology, Bioinformatics and Medicine. This special issue includes nine papers that were selected among forty presentations and included in this special issue after two rounds of reviewing.