Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 10 of 167
  • Thumbnail Image
    PublicationOpen Access
    3D printed microneedles for point of care biosensing applications
    (Multidisciplinary Digital Publishing Institute (MDPI), 2022) Department of Mechanical Engineering; Sarabi, Misagh Rezapour; Nakhjavani, Sattar Akbar; Taşoğlu, Savaş; Faculty Member; Department of Mechanical Engineering; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); KU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR); Koç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI); Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 291971
    Microneedles (MNs) are an emerging technology for user-friendly and minimally invasive injection, offering less pain and lower tissue damage in comparison to conventional needles. With their ability to extract body fluids, MNs are among the convenient candidates for developing biosensing setups, where target molecules/biomarkers are detected by the biosensor using the sample collected with the MNs. Herein, we discuss the 3D printing of microneedle arrays (MNAs) toward enabling point-of-care (POC) biosensing applications.
  • Placeholder
    Publication
    3D surface topography analysis in 5-axis ball-end milling
    (Elsevier, 2017) N/A; Department of Mechanical Engineering; Khavidaki, Sayed Ehsan Layegh; Lazoğlu, İsmail; PHD Student; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 179391
    This article presents a new analytical model to predict the topography and roughness of the machined surface in 5-axis ball-end milling operation for the first time. The model is able to predict the surface topography and profile roughness parameters such as 3D average roughness (Sa) and 3D root mean square roughness (Sq) by considering the process parameters such as the feedrate, number of flutes, step over and depth of cut as well as the effects of eccentricity and tool runout in 5-axis ball-end milling. This model allows to simulate the effects of the lead and tilt angles on the machined surface quality in the virtual environment prior to the costly 5-axis machining operations. The effectiveness of the introduced surface topography prediction model is validated experimentally by conducting 5-axis ball-end milling tests in various cutting conditions. (C) 2017 Published by Elsevier Ltd on behalf of CIRP.
  • Placeholder
    Publication
    A CAM-based path generation method for rapid prototyping applications
    (Springer London Ltd, 2011) N/A; Department of Mechanical Engineering; Lazoğlu, İsmail; N/A; Faculty Member; Department of Mechanical Engineering; Manufacturing and Automation Research Center (MARC); N/A; College of Engineering; N/A; 179391
    A wide range of rapid prototyping (RP) methods are available commercially. Even though the hardware and production materials of these RP methods differ, their production techniques are built on the same idea: layer-by-layer material additive manufacturing. Whatever the material is used, it is deposited, vulcanized, or melted by following a pre-determined path, and each layer is stowed on the previous one to create the 3D model which is designed by using a computer-aided design program. The path which is followed while creating the model is very crucial. In this paper, a novel idea for path generation for RP processes is introduced. This new method is based on computer numerical controlled milling operation. Although the RP process and the milling process are completely opposite of each other since one of them is an additive and the other one is a subtractive method, the paths which are followed for these operations are very similar and based on the same idea: The progress goes on layer by layer. In this novel method, cutter location source files are used to create paths for RP processes. Examples of the prototypes produced by using this new method are also presented in the paper.
  • Placeholder
    Publication
    A deep etching mechanism for trench-bridging silicon nanowires
    (Iop Publishing Ltd, 2016) Wollschlaeger, Nicole; Österle, Werner; Leblebici, Yusuf; N/A; Department of Mechanical Engineering; Taşdemir, Zuhal; Alaca, Burhanettin Erdem; PhD Student; Faculty Member; Department of Mechanical Engineering; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; College of Engineering; N/A; 115108
    Introducing a single silicon nanowire with a known orientation and dimensions to a specific layout location constitutes a major challenge. The challenge becomes even more formidable, if one chooses to realize the task in a monolithic fashion with an extreme topography, a characteristic of microsystems. The need for such a monolithic integration is fueled by the recent surge in the use of silicon nanowires as functional building blocks in various electromechanical and optoelectronic applications. This challenge is addressed in this work by introducing a topdown, silicon-on-insulator technology. The technology provides a pathway for obtaining wellcontrolled silicon nanowires along with the surrounding microscale features up to a three-orderof-magnitude scale difference. A two-step etching process is developed, where the first shallow etch defines a nanoscale protrusion on the wafer surface. After applying a conformal protection on the protrusion, a deep etch step is carried out forming the surrounding microscale features. A minimum nanowire cross-section of 35 nm by 168 nm is demonstrated in the presence of an etch depth of 10 mu m. Nanowire cross-sectional features are characterized via transmission electron microscopy and linked to specific process steps. The technology allows control on all dimensional aspects along with the exact location and orientation of the silicon nanowire. The adoption of the technology in the fabrication of micro and nanosystems can potentially lead to a significant reduction in process complexity by facilitating direct access to the nanowire during surface processes such as contact formation and doping.
  • Placeholder
    Publication
    A front tracking method for particle-resolved simulation of evaporation and combustion of a fuel droplet
    (Pergamon-Elsevier Science Ltd, 2018) N/A; N/A; Department of Mechanical Engineering; Irfan, Muhammad; Muradoğlu, Metin; PhD Student; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 46561
    A front-tracking method is developed for the particle-resolved simulations of droplet evaporation and combustion in a liquid-gas multiphase system. One field formulation of the governing equations is solved in the whole computational domain by incorporating suitable jump conditions at the interface. Both phases are assumed to be incompressible but the divergence-free velocity condition is modified to account for the phase change at the interface. A temperature gradient based evaporation model is used. An operator-splitting approach is employed to advance temperature and species mass fractions in time. The CHEMKIN package is incorporated into the solver to handle the chemical kinetics. The multiphase flow solver and the evaporation model are first validated using the benchmark problems. The method is then applied to study combustion of a n-heptane droplet using a single-step chemistry model and a reduced chemical kinetics mechanism involving 25-species and 26-reactions. The results are found to be in good agreement with the experimental data and the previous numerical simulations for the time history of the normalized droplet size, the gasification rate, the peak temperature and the ignition delay times. The initial flame diameter and the profile of the flame standoff ratio are also found to be compatible with the results in the literature. The method is finally applied to simulate a burning droplet moving due to gravity at various ambient temperatures and interesting results are observed about the flame blow-off.
  • Placeholder
    Publication
    A front-tracking method for computational modeling of impact and spreading of viscous droplets on solid walls
    (Pergamon-Elsevier Science Ltd, 2010) N/A; Department of Mechanical Engineering; Department of Mechanical Engineering; Muradoğlu, Metin; Taşoğlu, Savaş; Faculty Member; Faculty Member; Department of Mechanical Engineering; College of Engineering; College of Engineering; 46561; 291971
    A finite-difference/front-tracking method is developed for computational modeling of impact and spreading of a viscous droplet on dry solid walls. The contact angle is specified dynamically using the empirical correlation given by Kistler (1993). The numerical method is general and can treat non-wetting, partially wetting and fully wetting cases but the focus here is placed on the partially wetting substrates. Here the method is implemented for axisymmetric problems but it is straightforward to extend it to three dimensional cases. Grid convergence of the method is demonstrated and the validity of the dynamic contact angle method is examined. The method is first tested for the spreading and relaxation of a droplet from the initial spherical shape to its final equilibrium conditions for various values of Eotvos number. Then it is applied to impact and spreading of glycerin droplets on wax and glass substrates and, the results are compared with experimental data of Sikalo et al. (2005). The numerical results are found in a good agreement with the experimental data. Finally the effects of governing non-dimensional numbers on the spreading rate, apparent contact angle and deformation of the droplet are investigated.
  • Placeholder
    Publication
    A front-tracking method for computational modeling of viscoelastic two-phase flow systems
    (Elsevier, 2015) N/A; N/A; Department of Mechanical Engineering; Izbassarov, Daulet; Muradoğlu, Metin; PhD Student; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 46561
    A front-tracking method is developed for direct numerical simulations of viscoelastic two-phase systems in which one or both phases could be viscoelastic. One set of governing equations is written for the whole computational domain and different phases are treated as a single fluid with variable material and rheological properties. The interface is tracked explicitly using a Lagrangian grid while the flow equations are solved on a fixed Eulerian grid. The surface tension is computed at the interface using the Lagrangian grid and included into the momentum equations as a body force. The Oldroyd-B, FENE-CR and FENE-MCR models are employed to model the viscoelasticity. The viscoelastic model equations are solved fully coupled with the flow equations within the front-tracking framework. A fifth-order WENO scheme is used to approximate the convective terms in the viscoelastic model equations and second-order central differences are used for all other spatial derivatives. A log-conformation method-is employed to alleviate the high Weissenberg number problem (HWNP) and found to be stable and very robust for a wide range of Weissenberg numbers. The method has been first validated for various benchmark single-phase and two-phase viscoelastic flow problems. Then it has been applied to study motion and deformation of viscoelastic two-phase systems in a pressure-driven flow through a capillary tube with a sudden contraction and expansion. The method has been demonstrated to be grid convergent with second-order spatial accuracy for all the cases considered in this paper.
  • Placeholder
    Publication
    A new feature-based method for robust and efficient rigid-body registration of overlapping point clouds
    (Springer, 2008) Oztireli, A. Cengiz; Department of Mechanical Engineering; Başdoğan, Çağatay; Faculty Member; Department of Mechanical Engineering; College of Engineering; 125489
    We propose a new feature-based registration method for rigid-body alignment of overlapping point clouds (PCs) efficiently under the influence of noise and outliers. The proposed registration method is independent of the initial position and orientation of PCs, and no assumption is necessary about their underlying geometry. In the process, we define a simple and efficient geometric descriptor, a novel k-NN search algorithm that outperforms most of the existing nearest neighbor search algorithms used for the same task, and a new algorithm to find corresponding points between PCs based on the invariance of Euclidian distance under rigid-body transformation.
  • Placeholder
    Publication
    A new robust consistent hybrid finite-volume/particle method for solving the PDF model equations of turbulent reactive flows
    (Pergamon-Elsevier Science Ltd, 2014) Department of Mechanical Engineering; Sheikhsarmast, Reza Mokhtarpoor; Türkeri, Hasret; Muradoğlu, Metin; PhD Student; PhD Student; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 46561
    A new robust hybrid finite-volume (FV)/particle method is developed for solving joint probability density function (JPDF) model equations of statistically stationary turbulent reacting flows. The method is designed to remedy the deficiencies of the hybrid algorithm developed by Muradoglu et al. (1999, 2001). The density-based FV solver in the original hybrid algorithm has been found to be excessively dissipative and yet not very robust. To remedy these deficiencies, a pressure-based PISO algorithm in the open source FV package, OpenFOAM, is used to solve the Favre-averaged mean mass and momentum equations while a particle-based Monte Carlo algorithm is employed to solve the fluctuating velocity-turbulence frequency-compositions JPDF transport equation. The mean density is computed as a particle field and passed to the FV method. Thus the redundancy of the density fields in the original hybrid method is removed making the new hybrid algorithm more consistent at the numerical solution level. The new hybrid algorithm is first applied to simulate non-swirling cold and reacting bluff-body flows. The convergence of the method is demonstrated. In contrast with the original hybrid method, the new hybrid algorithm is very robust with respect to grid refinement and achieves grid convergence without any unphysical vortex shedding in the cold bluff-body flow case. In addition, the results are found to be in good agreement with the earlier PDF calculations and also with the available experimental data. Finally the new hybrid algorithm is successfully applied to simulate the more complicated Sydney swirling bluff-body flame 'SM1'. The method is also very robust for this difficult test case and the results are in good agreement with the available experimental data. In all the cases, the PISO-FV solver is found to be highly resilient to the noise in the mean density field extracted from the particles.
  • Placeholder
    Publication
    A new venue toward predicting the role of hydrogen embrittlement on metallic materials
    (Springer, 2016) N/A; N/A; Department of Chemical and Biological Engineering; Department of Mechanical Engineering; Bal, Burak; Şahin, İbrahim; Uzun, Alper; Canadinç, Demircan; PhD Student; PhD Student; Faculty Member; Faculty Member; Department of Chemical and Biological Engineering; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; N/A; 59917; 23433
    This paper presents a new crystal plasticity formulation to predict the role of hydrogen embrittlement on the mechanical behavior of metallic materials. Specifically, a series of experiments were carried out to monitor the role of hydrogen interstitial content on the uniaxial tensile deformation response of iron alloyed with hydrogen, and the classical Voce hardening scheme was modified to account for the shear stresses imposed on arrested dislocations due to the surrounding hydrogen interstitials. The proposed set of physically grounded crystal plasticity formulations successfully predicted the deformation response of iron in the presence of different degrees of hydrogen embrittlement. Moreover, the combined experimental and modeling effort presented herein opens a new venue for predicting the alterations in the performance of metallic materials, where the hydrogen embrittlement is unavoidable.