Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 10 of 11
  • Placeholder
    Publication
    Extracellular glucose level regulates dependence on 78 for cell surface localization of multipass transmembrane proteins in HeLa cells
    (Wiley, 2018) Toyoda, Yusuke; Sarov, Mihail; Saitoh, Shigeaki; Department of Molecular Biology and Genetics; Akarlar, Büşra; Other; Faculty Member; Department of Molecular Biology and Genetics; College of Sciences; N/A; 105301
  • Placeholder
    Publication
    Genome-wide excision repair map of cyclobutane pyrimidine dimers in arabidopsis and the roles of csa1 and csa2 proteins in transcription-coupled repair(dagger)
    (Wiley, 2022) Kaya, Sezgi; Adebali, Ogun; Sancar, Aziz; Department of Molecular Biology and Genetics; Öztaş, Onur; Faculty Member; Department of Molecular Biology and Genetics; College of Sciences; 330370
    Plants depend on light for energy production. However, the UV component in sunlight also inflicts DNA damage, mostly in the form of cyclobutane pyrimidine dimers (CPD) and (6-4) pyrimidine-pyrimidone photoproducts, which are mutagenic and lethal to the plant cells. These lesions are repaired by blue-light-dependent photolyases and the nucleotide excision repair enzymatic systems. Here, we characterize nucleotide excision repair in Arabidopsis thaliana genome-wide and at single nucleotide resolution with special focus on transcription-coupled repair and the role of the CSA1 and CSA2 genes/proteins in dictating the efficiency and the strand preference of repair of transcribed genes. We demonstrate that CSA1 is the dominant protein in coupling repair to transcription with minor contribution from CSA2.
  • Thumbnail Image
    PublicationOpen Access
    In silico identification of widely used and well-tolerated drugs as potential SARS-CoV-2 3C-like protease and viral RNA-dependent RNA polymerase inhibitors for direct use in clinical trials
    (Taylor _ Francis, 2020) Asar, Sinan; Okyar, Alper; Department of Chemical and Biological Engineering; Department of Molecular Biology and Genetics; Gül, Şeref; Özcan, Onur; Barış, İbrahim; Kavaklı, İbrahim Halil; Researcher; Teaching Faculty; Faculty Member; Department of Chemical and Biological Engineering; Department of Molecular Biology and Genetics; Graduate School of Sciences and Engineering; N/A; N/A; 111629; 40319
    Despite strict measures taken by many countries, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be an issue of global concern. Currently, there are no clinically proven pharmacotherapies for coronavirus disease 2019, despite promising initial results obtained from drugs such as azithromycin and hydroxychloroquine. Therefore, the repurposing of clinically approved drugs for use against SARS-CoV-2 has become a viable strategy. Here, we searched for drugs that target SARS-CoV-2 3C-like protease (3CL(pro)) and viral RNA-dependent RNA polymerase (RdRp) by in silico screening of the U.S. Food and Drug Administration approved drug library. Well-tolerated and widely used drugs were selected for molecular dynamics (MD) simulations to evaluate drug-protein interactions and their persistence under physiological conditions. Tetracycline, dihydroergotamine, ergotamine, dutasteride, nelfinavir, and paliperidone formed stable interactions with 3CL(pro)based on MD simulation results. Similar analysis with RdRp showed that eltrombopag, tipranavir, ergotamine, and conivaptan bound to the enzyme with high binding free energies. Docking results suggest that ergotamine, dihydroergotamine, bromocriptine, dutasteride, conivaptan, paliperidone, and tipranavir can bind to both enzymes with high affinity. As these drugs are well tolerated, cost-effective, and widely used, our study suggests that they could potentially to be used in clinical trials for the treatment of SARS-CoV-2-infected patients.
  • Placeholder
    Publication
    Loss of Mgr2P destabilizes the TIM23 channel and reduces mitochondrial emission of reactive oxygen species
    (Cell Press, 2019) Mirzalieva, Oygul; Jeon, Shinhye; Damri, Kevin; Hartke, Ruth; Drwesh, Layla; Demishtein-Zohary, Keren; Azem, Abdussalam; Peixoto, Pablo M.; Department of Molecular Biology and Genetics; Dunn, Cory David; Other; Department of Molecular Biology and Genetics; College of Sciences; N/A
    N/A
  • Placeholder
    Publication
    Models of synaptotagmin-1 to trigger Ca2+-dependent vesicle fusion
    (Wiley, 2018) Ryu, Je-Kyung; Department of Molecular Biology and Genetics; Park, Yongsoo; Faculty Member; Department of Molecular Biology and Genetics; College of Sciences; 240759
    Vesicles in neurons and neuroendocrine cells store neurotransmitters and peptide hormones, which are released by vesicle fusion in response to Ca2+-evoking stimuli. Synaptotagmin-1 (Syt1), a Ca2+ sensor, mediates ultrafast exocytosis in neurons and neuroendocrine cells. After vesicle docking, Syt1 has two main groups of binding partners: anionic phospholipids and the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) complex. The molecular mechanisms by which Syt1 triggers vesicle fusion remain controversial. This Review introduces and summarizes six molecular models of Syt1: (a) Syt1 triggers SNARE unclamping by displacing complexin, (b) Syt1 clamps SNARE zippering, (c) Syt1 causes membrane curvature, (d) membrane bridging by Syt1, (e) Syt1 is a vesicle-plasma membrane distance regulator, and (f) Syt1 undergoes circular oligomerization. We discuss important conditions to test Syt1 activity in vitro and attempt to illustrate the possible roles of Syt1.
  • Thumbnail Image
    PublicationOpen Access
    Near-physiological-temperature serial crystallography reveals conformations of SARS-CoV-2 main protease active site for improved drug repurposing
    (Elsevier, 2021) Durdağı, Serdar; Doğan, Berna; Avşar, Timuçin; Erol, İsmail; Çalış, Şeyma; Orhan, Müge D.; Aksoydan, Busecan; Şahin, Kader; Oktay, Lalehan; Tolu, İlayda; Olkan, Alpsu; Erdemoğlu, Ece; Yefanov, Oleksandr M.; Dao, E. Han; Hayes, Brandon; Liang, Mengning; Seaberg, Matthew H.; Hunter, Mark S.; Batyuk, Alex; Mariani, Valerio; Su, Zhen; Poitevin, Frederic; Yoon, Chun Hong; Kupitz, Christopher; Sierra, Raymond G.; Snell, Edward H.; Department of Molecular Biology and Genetics; Department of Chemical and Biological Engineering; N/A; Demirci, Hasan; Dağ, Çağdaş; Büyükdağ, Cengizhan; Ertem, Fatma Betül; Yıldırım, Günseli; Destan, Ebru; Güven, Ömür; Ayan, Esra; Yüksel, Büşra; Göcenler, Oktay; Can, Özgür; Özabrahamyan, Serena; Tanısalı, Gökhan; Faculty Member; Faculty Member; Undergraduate Student; PhD Student; Department of Molecular Biology and Genetics; Department of Chemical and Biological Engineering; Koç Üniversitesi İş Bankası Enfeksiyon Hastalıkları Uygulama ve Araştırma Merkezi (EHAM) / Koç University İşbank Center for Infectious Diseases (KU-IS CID); College of Sciences; Graduate School of Sciences and Engineering; School of Nursing; 307350; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A
    The COVID-19 pandemic has resulted in 198 million reported infections and more than 4 million deaths as of July 2021 (covid19.who.int). Research to identify effective therapies for COVID-19 includes: (1) designing a vaccine as future protection; (2) de novo drug discovery; and (3) identifying existing drugs to repurpose them as effective and immediate treatments. To assist in drug repurposing and design, we determine two apo structures of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease at ambient temperature by serial femtosecond X-ray crystallography. We employ detailed molecular simulations of selected known main protease inhibitors with the structures and compare binding modes and energies. The combined structural and molecular modeling studies not only reveal the dynamics of small molecules targeting the main protease but also provide invaluable opportunities for drug repurposing and structure-based drug design strategies against SARS-CoV-2.
  • Placeholder
    Publication
    Noninvasive in vivo determination of residual strains and stresses
    (ASME, 2015) N/A; Department of Molecular Biology and Genetics; Department of Mechanical Engineering; Donmazov, Samir; Pişkin, Şenol; Pekkan, Kerem; PhD Student; Researcher; Faculty Member; Department of Molecular Biology and Genetics; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; 148702; 161845
    Vascular growth and remodeling during embryonic development are associated with blood flow and pressure induced stress distribution, in which residual strains and stresses play a central role. Residual strains are typically measured by performing in vitro tests on the excised vascular tissue. In this paper, we investigated the possibility of estimating residual strains and stresses using physiological pressure-radius data obtained through in vivo noninvasive measurement techniques, such as optical coherence tomography or ultrasound modalities. This analytical approach first tested with in vitro results using experimental data sets for three different arteries such as rabbit carotid artery, rabbit thoracic artery, and human carotid artery based on Fung's pseudostrain energy function and Delfino's exponential strain energy function (SEF). We also examined residual strains and stresses in the human swine iliac artery using the in vivo experimental ultrasound data sets corresponding to the systolic-to-diastolic region only. This allowed computation of the in vivo residual stress information for loading and unloading states separately. Residual strain parameters as well as the material parameters were successfully computed with high accuracy, where the relative errors are introduced in the range of 0-7.5%. Corresponding residual stress distributions demonstrated global errors all in acceptable ranges. A slight discrepancy was observed in the computed reduced axial force. Results of computations performed based on in vivo experimental data obtained from loading and unloading states of the artery exhibited alterations in material properties and residual strain parameters as well. Emerging noninvasive measurement techniques combined with the present analytical approach can be used to estimate residual strains and stresses in vascular tissues as a precursor for growth estimates. This approach is also validated with a finite element model of a general two-layered artery, where the material remodeling states and residual strain generation are investigated.
  • Placeholder
    Publication
    Proteome analysis of the circadian clock protein PERIOD2
    (Wiley, 2022) Gül, Hüseyin; Selvi, Saba; Yılmaz, Fatma; Özçelik, Gözde; Olfaz-Aslan, Senanur; Yazan, Şeyma; Tiryaki, Büşra; Gül, Şeref; Öztürk, Nuri; N/A; Department of Chemical and Biological Engineering; Department of Molecular Biology and Genetics; Yurtseven, Ali; Kavaklı, İbrahim Halil; Master Student; Faculty Member; Faculty Member; Department of Chemical and Biological Engineering; Department of Molecular Biology and Genetics; Graduate School of Sciences and Engineering; College of Engineering; College of Sciences; N/A; 40319; 105301
    Circadian rhythms are a series of endogenous autonomous 24-h oscillations generated by the circadian clock. At the molecular level, the circadian clock is based on a transcription-translation feedback loop, in which BMAL1 and CLOCK transcription factors of the positive arm activate the expression of CRYPTOCHROME (CRY) and PERIOD (PER) genes of the negative arm as well as the circadian clock-regulated genes. There are three PER proteins, of which PER2 shows the strongest oscillation at both stability and cellular localization level. Protein-protein interactions (PPIs) or interactome of the circadian clock proteins have been investigated using classical methods such as two-dimensional gel electrophoresis, immunoprecipitation-coupled mass spectrometry, and yeast-two hybrid assay where the dynamic and weak interactions are difficult to catch. To identify the interactome of PER2 we have adopted proximity-dependent labeling with biotin and mass spectrometry-based identification of labeled proteins (BioID). In addition to known interactions with such as CRY1 and CRY2, we have identified several new PPIs for PER2 and confirmed some of them using co-immunoprecipitation technique. This study characterizes the PER2 protein interactions in depth, and it also implies that using a fast BioID method with miniTurbo or TurboID coupled to other major circadian clock proteins might uncover other interactors in the clock that have yet to be discovered.
  • Placeholder
    Publication
    SNARE-mediated fusion of single chromaffin granules with pore-spanning membranes
    (Cell Press, 2019) Hubrich, Raphael; Steinem, Claudia; Jahn, Reinhard; Mey, Ingo; Department of Molecular Biology and Genetics; Park, Yongsoo; Faculty Member; Department of Molecular Biology and Genetics; College of Sciences; 240759
    Pore-spanning membranes (PSMs) composed of supported membrane parts as well as freestanding membrane parts are shown to be very versatile to investigate SNARE-mediated fusion on the single-particle level. They provide a planar geometry readily accessible by confocal fluorescence microscopy, which enabled us for the first time, to our knowledge, to investigate the fusion of individual natural secretory granules (i.e., chromaffin granules (CGs)) on the single-particle level by two-color fluorescence microscopy in a time-resolved manner. The t-SNARE acceptor complex Delta N49 was reconstituted into PSMs containing 2 mol % 1,2-dipalmitoyl-sn-glycero-3-phosphatidylinositol-4,5-bisphosphate and Atto488-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, and CGs were fluorescently labeled with 2-((1E,3E)-5-((Z)-3,3-dimethyl-1-octadecylindolin-2-ylidene)penta-1,3-dien-1-yl)-3,3-dimethyl-1-octadecyl-3H-indol-1-ium perchlorate. We compared the dynamics of docked and hemifused CGs as well as their fusion efficacy and kinetics with the results obtained for synthetic synaptobrevin 2-doped vesicles fusing with PSMs of the same composition. Whereas the synthetic vesicles were fully immobile on supported PSMs, docked as well as hemifused CGs were mobile on both PSM parts, which suggests that this system resembles more closely the natural situation. The fusion process of CGs proceeded through three-dimensional post-lipid-mixing structures, which were readily resolved on the gold-covered pore rims of the PSMs and which are discussed in the context of intermediate states observed in live cells.
  • Placeholder
    Publication
    Structural analysis of mammalian protein phosphorylation at a proteome level
    (Cell Press, 2021) N/A; N/A; Department of Chemical and Biological Engineering; Department of Molecular Biology and Genetics; Kamacıoğlu, Altuğ; Tunçbağ, Nurcan; Master Student; Faculty Member; Faculty Member; Department of Chemical and Biological Engineering; Department of Molecular Biology and Genetics; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Graduate School of Sciences and Engineering; College of Engineering; College of Sciences; N/A; 245513; 105301
    Phosphorylation is an essential post-translational modification for almost all cellular processes. Several global phosphoproteomics analyses have revealed phosphorylation profiles under different conditions. Beyond identification of phospho-sites, protein structures add another layer of information about their functionality. In this study, we systematically characterize phospho-sites based on their 3D locations in the protein and establish a location map for phospho-sites. More than 250,000 phospho-sites have been analyzed, of which 8,686 sites match at least one structure and are stratified based on their respective 3D positions. Core phospho-sites possess two distinct groups based on their dynamicity. Dynamic core phosphorylations are significantly more functional compared with static ones. The dynamic core and the interface phosphosites are the most functional among all 3D phosphorylation groups. Our analysis provides global characterization and stratification of phospho-sites from a structural perspective that can be utilized for predicting functional relevance and filtering out false positives in phosphoproteomic studies.