Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 10 of 225
  • Placeholder
    Publication
    ‘Anti-commutable’ local pre-Leibniz algebroids and admissible connections
    (Elsevier, 2023) Department of Physics; N/A; Dereli, Tekin; Doğan, Keremcan; Faculty Member; PhD Student; Department of Physics; College of Sciences; Graduate School of Sciences and Engineering; 201358; N/A
    The concept of algebroid is convenient as a basis for constructions of geometrical frameworks. For example, metric-affine and generalized geometries can be written on Lie and Courant algebroids, respectively. Furthermore, string theories might make use of many other algebroids such as metric algebroids, higher Courant algebroids, or conformal Courant algebroids. Working on the possibly most general algebroid structure, which generalizes many of the algebroids used in the literature, is fruitful as it creates a chance to study all of them at once. Local pre-Leibniz algebroids are such general ones in which metric-connection geometries are possible to construct. On the other hand, the existence of the 'locality operator', which is present for the left-Leibniz rule for the bracket, necessitates the modification of torsion and curvature operators in order to achieve tensorial quantities. In this paper, this modification of torsion and curvature is explained from the point of view that the modification is applied to the bracket instead. This leads one to consider 'anti-commutable' local pre-Leibniz algebroids which satisfy an anti-commutativity-like property defined with respect to a choice of an equivalence class of connections. These 'admissible' connections are claimed to be the necessary ones while working on a geometry of algebroids. This claim is due to the fact that one can prove many desirable properties and relations if one uses only admissible connections. For instance, for admissible connections, we prove the first and second Bianchi identities, Cartan structure equations, Cartan magic formula, the construction of Levi-Civita connections, the decomposition of connection in terms of torsion and non-metricity. These all are possible because the modified bracket becomes anti-symmetric for an admissible connection so that one can apply the machinery of almost-or pre-Lie algebroids. We investigate various algebroid structures from the literature and show that they admit admissible connections which are metric-compatible in some generalized sense. Moreover, we prove that local pre-Leibniz algebroids that are not anti-commutable cannot be equipped with a torsion-free, and in particular Levi-Civita, connection.
  • Placeholder
    Publication
    21 fs Cr:LiSAF laser mode locked with a single-walled carbon nanotube saturable absorber
    (Optical Soc Amer, 2019) Bae, Ji Eun; Rotermund, Fabian; Demirbaş, Ümit; N/A; N/A; N/A; Department of Physics; Tanısalı, Gökhan; Toker, Işınsu Baylam; Taşçı, Mısra; Sennaroğlu, Alphan; PhD Student; PhD Student; Undergraduate Student; Faculty Member; Department of Physics; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; School of Medicine; College of Sciences; N/A; N/A; N/A; 23851
    We report the shortest femtosecond pulses directly generated from a solid-state laser that is mode locked by using a single-walled carbon nanotube saturable absorber (SWCNT-SA). In the experiments, we used a 660 nm diode-pumped, low-threshold extended-cavity Cr:LiSAF laser operating around 850 nm with a repetition rate of 47.9 MHz. The SWCNT-SA mode-locked Cr:LiSAF laser produced 21 fs pulses with a time-bandwidth product of 0.56 by using only 210 mW of pump power. Pump-probe spectroscopy measurements showed that the SWCNT-SA exhibited saturable absorption with slow and fast decay times of 2.7 ps and 0.4 ps. The single-pass modulation depth and saturation fluence of the SWCNT-SA were further determined as 0.3% and 45 mu J/cm(2) at the pump wavelength of 850 nm.
  • Placeholder
    Publication
    A computational study of the reactivity of diethenylnaphthalenes towards anionic polymerization
    (Royal Soc Chemistry, 1999) Akın, Fatma Ahu; Erdem, Safiye Sağ; Nugay, Turgut; Aviyente, Viktorya; Department of Physics; Reşat, Haluk; Faculty Member; Department of Physics; College of Sciences; N/A
    Diethenyl, di(1-methylethenyl), and di(1-phenylethenyl) naphthalenes are known to be difunctional initiators used in the synthesis of thermoplastic elastomers. Semiempirical (AM1, PM3) and ab initio calculations (HF/6-31G, HF/6-31G*) have been carried out to determine the reactivity of these compounds towards anionic polymerization. For this purpose, geometrical parameters, electrostatic potentials, and frontier orbitals have been analyzed. Reaction paths starting from the diethenylnaphthalenes and reaching the proposed products have been studied, and transition structures along the paths have been located. The minimum energy conformers were determined through a conformational search around single bonds for a series of diethenylnaphthalenes. We have attempted to predict how the location of the vinyl groups affects the reactivity of diethenylnaphthalenes. Our results have revealed that the most suitable difunctional initiators for anionic polymerization are the compounds where the substituents lie away from the naphthalene bridge. We have also found that in some cases the substituents are conjugated with each other and di(1-phenylethenyl)naphthalenes are more reactive th an diethenylnaphthalenes which in turn are more reactive than di(1-methylethenyl)naphthalenes towards anionic polymerization.
  • Thumbnail Image
    PublicationOpen Access
    A four-dimensional lambda CDM-type cosmological model induced from higher dimensions using a kinematical constraint
    (Springer, 2013) Department of Physics; Dereli, Tekin; Akarsu, Özgür; Faculty Member; Department of Physics; College of Sciences; 201358; N/A
    A class of cosmological solutions of higher dimensional Einstein field equations with the energy-momentum tensor of a homogeneous, isotropic fluid as the source are considered with an anisotropic metric that includes the direct sum of a 3-dimensional (physical, flat) external space metric and an -dimensional (compact, flat) internal space metric. A simple kinematical constraint is postulated that correlates the expansion rates of the external and internal spaces in terms of a real parameter . A specific solution for which both the external and internal spaces expand at different rates is given analytically for . Assuming that the internal dimensions were at Planck length scales when the external space starts with a Big Bang (), they expand only 1.49 times and stay at Planck length scales even in the present age of the universe (13.7 Gyr). The effective four dimensional universe would exhibit a behavior consistent with our current understanding of the observed universe. It would start in a stiff fluid dominated phase and evolve through radiation dominated and pressureless matter dominated phases, eventually going into a de Sitter phase at late times.
  • Thumbnail Image
    PublicationOpen Access
    A hybrid broadband metalens operating at ultraviolet frequencies
    (Nature Publishing Group (NPG), 2021) Department of Physics; Ali, Farhan; Ramazanoğlu, Serap Aksu; Faculty Member; Department of Physics; Graduate School of Sciences and Engineering; College of Sciences; N/A; 243745
    The investigation on metalenses have been rapidly developing, aiming to bring compact optical devices with superior properties to the market. Realizing miniature optics at the UV frequency range in particular has been challenging as the available transparent materials have limited range of dielectric constants. In this work we introduce a low absorption loss and low refractive index dielectric material magnesium oxide, MgO, as an ideal candidate for metalenses operating at UV frequencies. We theoretically investigate metalens designs capable of efficient focusing over a broad UV frequency range (200–400 nm). The presented metalenses are composed of sub-wavelength MgO nanoblocks, and characterized according to the geometric Pancharatnam–Berry phase method using FDTD method. The presented broadband metalenses can focus the incident UV light on tight focal spots (182 nm) with high numerical aperture (NA ≈ 0.8). The polarization conversion efficiency of the metalens unit cell and focusing efficiency of the total metalens are calculated to be as high as 94%, the best value reported in UV range so far. In addition, the metalens unit cell can be hybridized to enable lensing at multiple polarization states. The presented highly efficient MgO metalenses can play a vital role in the development of UV nanophotonic systems and could pave the way towards the world of miniaturization.
  • Thumbnail Image
    PublicationOpen Access
    A note on the pp-wave solution of minimal massive 3D gravity coupled with Maxwell-Chern-Simons theory
    (Institute of Physics (IOP) Publishing, 2022) Cebeci, Hakan; Şentorun, Seçil; Department of Physics; Dereli, Tekin; Faculty Member; Department of Physics; College of Sciences; 201358
    In this work, we examine a family of pp-wave solutions of minimal massive 3D gravity minimally coupled with the Maxwell-Chern-Simons theory. An elaborate investigation of the field equations shows that the theory admits pp-wave solutions provided that there exist an anti-self duality relation between the electric and the magnetic components of the Maxwell two-form field. By employing Noether-Wald formalism, we also construct Noether charges of the theory within exterior algebra formalism.
  • Placeholder
    Publication
    A novel machine learning method for the design optimization of diamond waveguides fabricated by femtosecond laser writing
    (Elsevier, 2024) Ince, Faik Derya; Ozel, Tugrul; Department of Physics; Morova, Yağız; Sennaroğlu, Alphan; Department of Physics; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); College of Sciences;  
    We report on a novel machine learning method for the design optimization of femtosecond (fs) laser written dielectric waveguides. Experimental results previously obtained from the optical characterization of fs laser written depressed cladding diamond waveguides have been used to form statistically generated regression models. Design variables such as core diameter and number of written tracks were varied to both minimize the propagation loss as well as to establish a full-factorial experimental design. The regression models were used to conduct a multi-objective optimization study to optimize the competing objectives such as maximizing the refractive index contrast while minimizing the propagation loss and V-number by using a genetic algorithm. Optimization was subject to a nonlinear Rayleigh range constraint to ensure that the structure was in the waveguiding regime. Results from the optimization revealed the optimum variables to achieve low-loss and nearly single-mode guiding for a fs laser written diamond waveguide. Using the solution sets of design parameters resulting from the optimization study and their corresponding objective function values, important correlations between the design parameters and the objective functions have been revealed. With this regard, it has been shown that the number of written tracks is a much more dominant parameter, when compared to core diameter, during the design of a fs laser written circular depressed cladding diamond waveguide. The proposed method should be applicable not only to diamond waveguides but also to a wide range of dielectric waveguides fabricated by fs laser writing.
  • Placeholder
    Publication
    A planar metamaterial with dual-band double-negative response at EHF
    (2010) Gündoğdu, T. Funda; Gökkavaş, Mutlu; Soukoulis, Costas M.; Özbay, Ekmel; Department of Physics; Güven, Kaan; Faculty Member; Department of Physics; College of Sciences; 52290
    We report the fabrication and electromagnetic characterization of a planar composite metamaterial (CMM) that is designed to achieve dual-frequency double-negative response at the lower end of the extremely high-frequency (EHF) band. The CMM is based on cut wire pairs and continuous wire elements. Dual-frequency operation is obtained by employing cut wire pairs of two different lengths within the unit cell of the CMM. The magnetic response of the cut wire pairs and the left-handed transmission band of the CMM are demonstrated by experiment and numerical simulations. It is found that the combined electric response of the dual-band CMM is complicated and imposes certain restrictions to the structure design in achieving true left-handed response at both designated frequencies.
  • Thumbnail Image
    PublicationOpen Access
    Accelerated expansion of the Universe in a higher dimensional modified gravity with Euler-Poincaré terms
    (Institute of Physics (IOP) Publishing, 2015) Akarsu, Özgür; Department of Physics; Dereli, Tekin; Oflaz, Neslihan; PhD Student; Department of Physics; College of Sciences; 201358; N/A
    A higher dimensional modified gravity theory with an action that includes dimensionally continued Euler-Poincare forms up to second order in curvatures is considered. The variational field equations are derived. Matter in the Universe at large scales is modeled by a fluid satisfying an equation of state with dimensional dichotomy. We study solutions that describe higher dimensional steady state cosmologies with constant volume for which the three dimensional external space is expanding at an accelerated rate while the (compact) internal space is contracting. We showed that the second order Euler-Poincare term in the constructions of higher dimensional steady state cosmologies could be crucial.
  • Thumbnail Image
    PublicationOpen Access
    Accelerating anisotropic cosmologies in Brans-Dicke gravity coupled to a mass-varying vector field
    (Institute of Physics (IOP) Publishing, 2014) Department of Physics; Akarsu, Özgür; Dereli, Tekin; Oflaz, Neslihan; PhD Student; Department of Physics; College of Sciences; N/A; 201358; N/A
    The field equations of Brans-Dicke gravity coupled to a mass-varying vector field are derived. Anisotropic cosmological solutions with a locally rotationally symmetric Bianchi type I metric and time-dependent scalar and electric vector fields are studied. A particular class of exact solutions for which all the variable parameters have a power-law time dependence is given. The universe expands with a constant expansion anisotropy within this class of solutions. We show that the accelerating expansion is driven by the scalar field and the electric vector field can be interpreted as an anisotropic dark matter source.