Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 10 of 274
  • Thumbnail Image
    PublicationOpen Access
    A divergence-free parametrization for dynamical dark energy
    (Institute of Physics (IOP) Publishing, 2015) Vazquez, J. Alberto; Department of Physics; Dereli, Tekin; Akarsu, Özgür; Faculty Member; Department of Physics; College of Sciences; 201358; N/A
    We introduce a new parametrization for the dark energy, led by the same idea to the linear expansion of the equation of state in scale factor a and in redshift z, which diverges neither in the past nor future and contains the same number of degrees of freedom with the former two. We present constraints of the cosmological parameters using the most updated baryon acoustic oscillation (BAO) measurements along with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data. This new parametrization allowed us to carry out successive observational analyses by decreasing its degrees of freedom systematically until ending up with a dynamical dark energy model that has the same number of parameters with ACDM. We found that the dark energy source with a dynamical equation of state parameter equal 2/3 at the early universe and -1 today fits the data slightly better than A.
  • Thumbnail Image
    PublicationOpen Access
    A hybrid broadband metalens operating at ultraviolet frequencies
    (Nature Publishing Group (NPG), 2021) Department of Physics; Ali, Farhan; Ramazanoğlu, Serap Aksu; Faculty Member; Department of Physics; Graduate School of Sciences and Engineering; College of Sciences; N/A; 243745
    The investigation on metalenses have been rapidly developing, aiming to bring compact optical devices with superior properties to the market. Realizing miniature optics at the UV frequency range in particular has been challenging as the available transparent materials have limited range of dielectric constants. In this work we introduce a low absorption loss and low refractive index dielectric material magnesium oxide, MgO, as an ideal candidate for metalenses operating at UV frequencies. We theoretically investigate metalens designs capable of efficient focusing over a broad UV frequency range (200–400 nm). The presented metalenses are composed of sub-wavelength MgO nanoblocks, and characterized according to the geometric Pancharatnam–Berry phase method using FDTD method. The presented broadband metalenses can focus the incident UV light on tight focal spots (182 nm) with high numerical aperture (NA ≈ 0.8). The polarization conversion efficiency of the metalens unit cell and focusing efficiency of the total metalens are calculated to be as high as 94%, the best value reported in UV range so far. In addition, the metalens unit cell can be hybridized to enable lensing at multiple polarization states. The presented highly efficient MgO metalenses can play a vital role in the development of UV nanophotonic systems and could pave the way towards the world of miniaturization.
  • Thumbnail Image
    PublicationOpen Access
    A narrow-band multi-resonant metamaterial in near-ir
    (Multidisciplinary Digital Publishing Institute (MDPI), 2020) Ali, Farhan; Department of Physics; Ramazanoğlu, Serap Aksu; Faculty Member; Department of Physics; College of Sciences; 243745
    We theoretically investigate a multi-resonant plasmonic metamaterial perfect absorber operating between 600 and 950 nm wavelengths. The presented device generates 100% absorption at two resonance wavelengths and delivers an ultra-narrow band (sub-20 nm) and high quality factor (Q = 44) resonance. The studied perfect absorber is a metal–insulator–metal configuration where a thin MgF2 spacer is sandwiched between an optically thick gold layer and uniformly patterned gold circular nanodisc antennas. The localized and propagating nature of the plasmonic resonances are characterized and confirmed theoretically. The origin of the perfect absorption is investigated using the impedance matching and critical coupling phenomenon. We calculate the effective impedance of the perfect absorber and confirm the matching with the free space impedance. We also investigate the scattering properties of the top antenna layer and confirm the minimized reflection at resonance wavelengths by calculating the absorption and scattering cross sections. The excitation of plasmonic resonances boost the near-field intensity by three orders of magnitude which enhances the interaction between the metamaterial surface and the incident energy. The refractive index sensitivity of the perfect absorber could go as high as S = 500 nm/RIU. The presented optical characteristics make the proposed narrow-band multi-resonant perfect absorber a favorable platform for biosensing and contrast agent based bioimaging.
  • Thumbnail Image
    PublicationOpen Access
    Accelerated expansion of the Universe in a higher dimensional modified gravity with Euler-Poincaré terms
    (Institute of Physics (IOP) Publishing, 2015) Akarsu, Özgür; Department of Physics; Dereli, Tekin; Oflaz, Neslihan; PhD Student; Department of Physics; College of Sciences; 201358; N/A
    A higher dimensional modified gravity theory with an action that includes dimensionally continued Euler-Poincare forms up to second order in curvatures is considered. The variational field equations are derived. Matter in the Universe at large scales is modeled by a fluid satisfying an equation of state with dimensional dichotomy. We study solutions that describe higher dimensional steady state cosmologies with constant volume for which the three dimensional external space is expanding at an accelerated rate while the (compact) internal space is contracting. We showed that the second order Euler-Poincare term in the constructions of higher dimensional steady state cosmologies could be crucial.
  • Thumbnail Image
    PublicationOpen Access
    Accelerating anisotropic cosmologies in Brans-Dicke gravity coupled to a mass-varying vector field
    (Institute of Physics (IOP) Publishing, 2014) Department of Physics; Akarsu, Özgür; Dereli, Tekin; Oflaz, Neslihan; PhD Student; Department of Physics; College of Sciences; N/A; 201358; N/A
    The field equations of Brans-Dicke gravity coupled to a mass-varying vector field are derived. Anisotropic cosmological solutions with a locally rotationally symmetric Bianchi type I metric and time-dependent scalar and electric vector fields are studied. A particular class of exact solutions for which all the variable parameters have a power-law time dependence is given. The universe expands with a constant expansion anisotropy within this class of solutions. We show that the accelerating expansion is driven by the scalar field and the electric vector field can be interpreted as an anisotropic dark matter source.
  • Thumbnail Image
    PublicationOpen Access
    Acoustic superradiance from an optical-superradiance-induced vortex in a Bose-Einstein condensate
    (American Physical Society (APS), 2014) Ghazanfari, Nader; Department of Physics; Müstecaplıoğlu, Özgür Esat; Faculty Member; Department of Physics; College of Sciences; 1674
    We consider the scattering of an acoustic wave from a vortex induced by optical superradiance. The vortex is created by pumping a large amount of angular momentum with a Laguerre-Gaussian light beam in an atomic Bose-Einstein condensate. We derive the mean-field dynamical equations of the light-superfluid system, and obtain the equations governing the elementary excitation of the system, which result in a massless Klein-Gordon equation with source terms. This equation describes the propagation of the sound wave in an effective space-time. Employing a simplifying draining bathtub model for the vortex, we investigate the scattering of the acoustic wave in the vortex phase and obtain a condition for the acoustic superradiance. We conclude that Laguerre-Gaussian-beam-induced sudden transition from homogeneous to vortex state in the superfluid leads to a prominent observation of the acoustic superradiance.
  • Thumbnail Image
    PublicationOpen Access
    Active invisibility cloaks in one dimension
    (American Physical Society (APS), 2015) Department of Mathematics; Department of Physics; Mostafazadeh, Ali; Faculty Member; Department of Mathematics; Department of Physics; College of Sciences; 4231
    We outline a general method of constructing finite-range cloaking potentials which render a given finite-range real or complex potential, v(x), unidirectionally reflectionless or invisible at a wave number, k(0), of our choice. We give explicit analytic expressions for three classes of cloaking potentials which achieve this goal while preserving some or all of the other scattering properties of v(x). The cloaking potentials we construct are the sum of up to three constituent unidirectionally invisible potentials. We discuss their utility in making v(x) bidirectionally invisible at k(0) and demonstrate the application of our method to obtain antireflection and invisibility cloaks for a Bragg reflector.
  • Thumbnail Image
    PublicationOpen Access
    Addendum to 'Unidirectionally invisible potentials as local building blocks of all scattering potentials'
    (American Physical Society (APS), 2014) Department of Mathematics; Department of Physics; Mostafazadeh, Ali; Faculty Member; Department of Mathematics; Department of Physics; College of Sciences; 4231
    In [Phys. Rev. A 90, 023833 (2014)], we offer a solution to the problem of constructing a scattering potential v(x) which possesses scattering properties of one's choice at an arbitrarily prescribed wave number. This solution involves expressing v(x) as the sum of n <= 6 finite-range unidirectionally invisible potentials. We improve this result by reducing the upper bound on n from 6 to 4. In particular, we show that we can construct v(x) as the sum of up to n = 3 finite-range unidirectionally invisible potentials, unless if it is required to be bidirectionally reflectionless.
  • Thumbnail Image
    PublicationOpen Access
    All optical control of magnetization in quantum confined ultrathin magnetic metals
    (Nature Publishing Group (NPG), 2021) Department of Physics; Department of Electrical and Electronics Engineering; N/A; Müstecaplıoğlu, Özgür Esat; Onbaşlı, Mehmet Cengiz; Naseem, Muhammad Tahir; Zanjani, Saeedeh Mokarian; Faculty Member; Faculty Member; Department of Physics; Department of Electrical and Electronics Engineering; College of Sciences; College of Engineering; Graduate School of Sciences and Engineering; 1674; 258783; N/A; N/A
    All-optical control dynamics of magnetization in sub-10 nm metallic thin films are investigated, as these films with quantum confinement undergo unique interactions with femtosecond laser pulses. Our theoretical analysis based on the free electron model shows that the density of states at Fermi level (DOSF) and electron-phonon coupling coefficients (G(ep)) in ultrathin metals have very high sensitivity to film thickness within a few angstroms. We show that completely different magnetization dynamics characteristics emerge if DOSF and G(ep) depend on thickness compared with bulk metals. Our model suggests highly efficient energy transfer from femtosecond laser photons to spin waves due to minimal energy absorption by phonons. This sensitivity to the thickness and efficient energy transfer offers an opportunity to obtain ultrafast on-chip magnetization dynamics.
  • Thumbnail Image
    PublicationOpen Access
    An easy-to-fabricate microfluidic shallow trench induced three-dimensional cell culturing and imaging (STICI3D) platform
    (American Chemical Society (ACS), 2022) Coşkun, Umut Can; Rehman, Ateeq Ur; Gülle, Merve; Erten, Ahmet; N/A; Department of Physics; Department of Electrical and Electronics Engineering; N/A; Başer, Hatice Nur; Baysal, Kemal; Kiraz, Alper; Kul, Demet; Kuş, Funda; Morova, Berna; Faculty Member; Faculty Member; Researcher; Department of Physics; Department of Electrical and Electronics Engineering; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Graduate School of Sciences and Engineering; School of Medicine; College of Sciences; College of Engineering; N/A; 119184; 22542; N/A; N/A; N/A
    Compared to the established monolayer approach of two-dimensional cell cultures, three-dimensional (3D) cultures more closely resemble in vivo models; that is, the cells interact and form clusters mimicking their organization in native tissue. Therefore, the cellular microenvironment of these 3D cultures proves to be more clinically relevant. In this study, we present a novel easy-to-fabricate microfluidic shallow trench induced 3D cell culturing and imaging (STICI3D) platform, suitable for rapid fabrication as well as mass manufacturing. Our design consists of a shallow trench, within which various hydrogels can be formed in situ via capillary action, between and fully in contact with two side channels that allow cell seeding and media replenishment, as well as forming concentration gradients of various molecules. Compared to a micropillar-based burst valve design, which requires sophisticated microfabrication facilities, our capillary-based STICI3D can be fabricated using molds prepared with simple adhesive tapes and razors alone. The simple design supports the easy applicability of mass-production methods such as hot embossing and injection molding as well. To optimize the STICI3D design, we investigated the effect of individual design parameters such as corner radii, trench height, and surface wettability under various inlet pressures on the confinement of a hydrogel solution within the shallow trench using Computational Fluid Dynamics simulations supported with experimental validation. We identified ideal design values that improved the robustness of hydrogel confinement and reduced the effect of end-user dependent factors such as hydrogel solution loading pressure. Finally, we demonstrated cultures of human mesenchymal stem cells and human umbilical cord endothelial cells in the STICI3D to show that it supports 3D cell cultures and enables precise control of cellular microenvironment and real-time microscopic imaging. The easy-to-fabricate and highly adaptable nature of the STICI3D platform makes it suitable for researchers interested in fabricating custom polydimethylsiloxane devices as well as those who are in need of ready-to-use plastic platforms. As such, STICI3Ds can be used in imaging cell-cell interactions, angiogenesis, semiquantitative analysis of drug response in cells, and measurement of transport through cell sheet barriers.