Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 2 of 2
  • Placeholder
    Publication
    Comparative molecular dynamics simulations of amphotericin B-cholesterol/ergosterol membrane channels
    (Elsevier, 2002) Baginski, Maciej; Borowski, Edward; Department of Physics; Reşat, Haluk; Faculty Member; Department of Physics; College of Sciences; N/A
    Amphotericin B (AmB) is a very effective anti-fungal polyene macrolide antibiotic whose usage is limited by its toxicity. Lack of a complete understanding of AmB's molecular mechanism has impeded attempts to design less toxic AmB derivatives. The antibiotic is known to interact with sterols present in the cell membrane to form ion channels that disrupt membrane function. The slightly higher affinity of AmB toward ergosterol (dominant sterol in fungal cells) than cholesterol (mammalian sterol) is regarded as the most essential factor on which antifungal chemotherapy is based. To study these differences at the molecular level, two realistic model membrane channels containing molecules of AmB, sterol (cholesterol or ergosterol), phospholipid, and water were studied by molecular dynamics (MID) simulations. Comparative analysis of the simulation data revealed that the sterol type has noticeable effect on the properties of AmB membrane channels. In addition to having a larger size, the AmB channel in the ergosterol-containing membrane has a more pronounced pattern of intermolecular hydrogen bonds. The interaction between the antibiotic and ergosterol is more specific than between the antibiotic and cholesterol. These observed differences suggest that the channel in the ergosterol-containing membrane is more stable and, due to its larger size, would have a higher ion conductance. These observations are in agreement with experiments. (C) 2002 Elsevier Science B.V. All rights reserved.
  • Thumbnail Image
    PublicationOpen Access
    Mode coupling points to functionally important residues in myosin II
    (Wiley, 2014) Department of Computer Engineering; Department of Chemical and Biological Engineering; Department of Physics; Varol, Onur; Yüret, Deniz; Erman, Burak; Kabakçıoğlu, Alkan; Faculty Member; Faculty Member; Faculty Member; Department of Computer Engineering; Department of Chemical and Biological Engineering; Department of Physics; Graduate School of Sciences and Engineering; College of Engineering; College of Sciences; N/A; 179996; 179997; 49854
    Relevance of mode coupling to energy/information transfer during protein function, particularly in the context of allosteric interactions is widely accepted. However, existing evidence in favor of this hypothesis comes essentially from model systems. We here report a novel formal analysis of the near-native dynamics of myosin II, which allows us to explore the impact of the interaction between possibly non-Gaussian vibrational modes on fluctutational dynamics. We show that an information-theoretic measure based on mode coupling alone yields a ranking of residues with a statistically significant bias favoring the functionally critical locations identified by experiments on myosin II.